Installing a WISP on an AM broadcast tower

This is an interesting project currently underway at one of our client’s AM sites.  They have decided to go all in and create a WISP (Wireless Internet Service Provider) for the community around the AM tower.  I thought it would be interesting to explore this topic, as there are not many opportunities for AM towers to lease vertical real estate.

First a few basic ideas.  For an AM broadcaster, (aka medium wave or standard broadcast band) the entire tower is part of the transmitting antenna.  There are two types of towers; series excited and shunt excited.  A series excited tower has a base insulator, like this:

AM tower with base insulator
AM tower with base insulator

A shunt tower usually has a series of wires called a skirt, separated from the tower by standoffs, which go to the top of the tower or nearly to the top of the tower. The base of the tower is grounded, like this:

AM tower with out base insulator
AM tower with out base insulator

A shunt excited tower has distinctive advantages for co-location opportunities in that the tower itself is grounded, greatly simplifying placing additional antennas on the towers.  That is not to say that antennas can not be installed on series excited (insulated) towers, it just requires an extra step of using isolation coils.

In all cases, the tower should have a structural study done to insure that the additional antennas do not overload the tower and cause structural damage or collapse.

In this case, the tower is new and was designed for the extra load.

The plan is to create a sectorized wireless internet system using four 90 degree panels, each with three access points.  A tower mounted sixteen port switch is mounted behind the panel antennas and the switch communicates with the ground mounted router through two fiber optic cables.  A 54 volt DC supply powers the switch, access points and point to point radios mounted on the tower.  There are two fiber runs, one is for subscriber traffic and the other is for radio management.  This system is using Ubiquiti gear.

Ubiquiti 90 degree sector antennas and radios
Ubiquiti 90 degree sector antennas and radios

A word or two about Ubiquiti gear.  Ubiquiti specializes in cheap equipment manufactured in China.  That is a double edged sword.  On the plus side, if anything breaks or gets damaged by lightning or whatever; throw it out and install a new one.  On the negative side, I  have seen Ubiquiti gear do some strange things, particularly after a firmware upgrade.  The newer stuff seems to be better than the older stuff.  All that being said, as this is a brand new operation and seems to be a proof of concept, then the Ubiquiti gear will be fine to start with.

Going up
Going up

The tower crew made quick work of installing the sectorized access points.

Tower crew waiting for equipment lift
Tower crew waiting for equipment lift

Going up the face of the tower, there are the aforementioned fiber cables, the 54 VDC power cable and one backup Ethernet cable.  All of the Ethernet jumper cables used to connect the access points to the switch are UV rated, shielded Cat 5e and use shielded connectors.  This is very important on a hot AM tower.  Due to the skin effect, the shield on the shielded cable protects the interior twisted pair conductors from the high AM RF fields present on the tower.

Transtector LPU 1101-1158
Transtector LPU 1101-1158 Ethernet cable protection unit

At the base of the tower, the DC power cable and the Ethernet cable go though high quality lightning protection units.  These are Transtector 1101-1158 Ethernet and 1101-1025 48 volt outdoor DC power units.  Even though the DC power supply is 54 volts, the 48 volt LPU’s will function adequately.  The TVSS devices used in the LPU circuit are rated for 88 volts maximum continuous voltage.

Transtector 1101-1025 48 VDC lightning protection unit
Transtector 1101-1025 48 VDC lightning protection unit

In addition, I made a service loop on the DC cable with also creates an RF choke.  Several (12-14) turns of cable 18-20 inches (45 to 50 cm) in diameter act to keep the induced RF at the input terminals of the LPU low so the protection devices do not fire on high modulation peaks.  This also helps to keep the AM RF out of the 54 VDC power supply in the rack.

Making ethernet jumper cables, TIA/EIA-568B
Making ethernet jumper cables, TIA/EIA-568B

The backup Ethernet cable has a similar setup.  Regarding the Ethernet cable and induced RF, this station runs 1 KW.  As long as the shielded RJ-45 connectors are applied properly and the tower mounted switch is grounded along with the LPU, then all of the RF should be on the very outside of the cable shield (due to the skin effect).

Base of AM tower with WISP equipment installed
Base of AM tower with WISP equipment installed

This principal also applies to lightning strikes.  Although lightning is DC voltage, it has a very fast rise time, which makes it behave like AC on the initial impulse of the strike. The voltage induced on the shield of the cable will not effect the twisted pairs found deeper within the Ethernet cable.  Of course, all bets are off if there is a direct strike on a piece of equipment.

AM stations running powers more than 1 KW, Superior Essex makes armored shielded cable called BBDG (the new trade name is EnduraGain OSP).  This cable comes with a heliax like copper shield with an optional aluminum spiral armor.  This cable looks very robust.

Enduragain OSP armored shielded Category cable
Enduragain OSP armored shielded Category cable

On series excited towers (those with an insulated base) fiber optic cable can be used to cross the base insulator without any problems, as long as there is not any metal in the cable (armor or aerial messenger).

LBA Group TC-300 tower lighting choke
LBA Group TC-300 tower lighting choke. 180 turns #12 AWG enamel wire on 6 inch coil form.

DC power can cross the base insulator using something called a “Tower Lighting Choke.”  This device is a set of coils wound around a form which passes the DC power but keeps the AM RF from following the DC power cable to ground.  These work relatively well, however, lightning protection units still need to be installed before the DC power supply.

Something is not right

The Goddamnitnotagain edition:

PA module with burned open output transformer

I went to do maintenance at one of our sites and noticed that a certain transmitter was running at half power. Followed the path of the fault log and found this. When I mentioned it to the station staff, they said, “Yeah, we noticed it sounded a little funny…”

This is the second time this has happened with this particular transmitter. In any case, this is what I get paid for, so I am certainly not complaining. If only every problem where this easy to find.

When I get back out there to replace this, I will bring out my network analyzer and sweep the antenna and transmission line to make sure there are not issues with that. In addition, I will double check all the grounding to make sure the copper thieves have not made off with any critical components like the ground buss bar or #2 solid down lead wires.

A few pictures

Some things I have been working on lately:

A nice row of transmitters
A nice row of transmitters

Finishing up a transmitter site rehab.  The BE FM20T is nearly 20 years old.  The BE FM2C transmitters are new.  There is also a rack of new fiber equipment and CODECs.  This site has good utilization; there are three stations on one tower with a shared STL antenna and generator.

Energy Onix ECO-6
Energy Onix ECO-6

Energy Onix ECO-6 tube type transmitter.  One of Bernie’s better designs, a grounded grid tube with solid state driver section.  This one needed some fans replaced and a new tube.

AM transmitter site.  Looks like these vines have not been cut in a couple of years.
AM transmitter site. Looks like these vines have not been cut in a couple of years.

I wonder how much the guy tensions have changed…

Noticed this after some particularly strong thunderstorms
Noticed this after some particularly strong thunderstorms

The reason why you do not use a POTS line phone during a thunderstorm.

USS Slater radio room
USS Slater radio room

I took a tour of the USS Slater, a museum ship in Albany, NY.  The museum has painstakingly restored the ship to its WWII configuration.  The main transmitter is the RCA TBL-8 seen in the left/center of this picture.  This unit put out 200 to 400 watts CW or 150 watts AM phone.  During the hostilities it was turned off as allied ships observed radio silence unless they were sinking (and sometimes even then).

A little ChiFi tube type RIAA phone preamp.
A little ChiFi tube type RIAA phone preamp.

I have been fooling around with this little 6AK5 preamp.  I find it works very well and sounds better than the built in phone preamp on my Kenwood VR-309.  The FU-29 tube amp did not come with a phone preamp.

This is a short video clip of an audio processor at one of our transmitter sites. The fancy lights around the control knob are designed for the program director. They are saying “Buy me… Buy me…”

Audio Bit Rates and Formats

Occasional reader and blogger Robert has broken down all the information on audio bit rates and audio formats.

His work can be found here: Ultimate Guide to Audio Bit Rates and Formats

It is a good read, especially for those that use audio streaming as their main content distribution method.

Streaming only stations used to be a big thing but have been supplanted by Spotify and Pandora.  I am not a huge fan of either of those services but I do like to listen to podcasts.

Good audio should be near the top of the list for any content provider.  Few things are more annoying than listening to an interesting podcast with low volume, background noise or other technical defects.