Heard in the clear

Archive

June 2018
M T W T F S S
« May    
 123
45678910
11121314151617
18192021222324
252627282930  

Categories

Installing a satellite dish

This is a replacement dish for the Comtech dish destroyed in a downburst event a few weeks ago.  The first part of the job entailed placement of the new dish down on the ground.  The town code enforcement officer was much happier with this idea than mounting it up above roof level along back the building as the old one was.  Of course, this is possible due to the shift in satellites last year to AMC-18.

Finding a good spot on the radio station property was fairly easy.  The studio is located in a business district, thus the side yard requirements where zero feet, which is great.  The building inspector required that we dig a test hole to see what type of soil was there.  It turned out to be fill.  That required the footing design be changed somewhat and stamped by a licensed engineer.  Not a major problem.

Satellite mount pole, waiting pre-pour inspection

Satellite mount pole, waiting pre-pour inspection

The footing is 36 inches wide by 7 feet deep.

A little bit of water in the bottom of the hole

A little bit of water in the bottom of the hole

The mounting pipe has flanges welded to the side of it to prevent it from spinning in the concrete.

Footing poured and cured

Footing poured and cured

After the pour, we let the concrete set up over the weekend.

New dish bolted together

New dish bolted together

The dish is assembled and waiting for lift.  We used a back hoe to lift the dish onto the mounting pole, unfortunately, I was not able to take a picture as I was on a ladder attaching the dish to the pedestal with U-bolts.

Viking 1374-990 3.7 Meter R/O dish installed

Viking 1374-990 3.7 Meter R/O dish installed

Here it is installed and aimed at AMC-18. I used the Satellite Buddy, which makes the aiming job much easier. Once the signal is acquired, I like to peak the Eb/No on the West Wood One carrier, which seems to be the most sensitive to any type of change.

Viking 1374-990 3.7 Meter satellite dish, back view

Viking 1374-990 3.7 Meter satellite dish, back view

Register those C band satellite dishes!

UPDATE:The registration deadline has been extended to October 17th, 2018. Switch back to procrastination mode…

Satellite dishs, WABC transmitter site, Lodi, NJ

Unless you have been sleeping under a rock, you should already be aware of the FCC request to register the C band Receive Only (RO) satellite dishes. This development comes from the never ending drive for more bandwidth from the mobile phone/data networks (remember the desire to use GPS frequencies for mobile data a few years ago).  Normally, this type of registration would require a full frequency coordination study, however until July 18th, this requirement has been waived.  The registration is completed online with the filing of FCC form 312 and a $435.00 filing fee.  West Wood One has supplied and example form (.pdf) which shows the required information for each dish.  Schedule B of FCC form 312 requires quite a bit of technical information required for each dish:

  • Site Coordinates (must be NAD27 according to the instructions on the form)
  • Site elevation AMSL in meters
  • Dish height to top of dish in meters
  • Dish make and model number
  • Dish size
  • Dish mid band gain
  • Emission designator (WWO uses 36M0G7W other providers may be different)
  • Eastern and Western arc limits
  • Eastern and Western arc limit elevation angles
  • Eastern and Western arc limit azimuth angles

Most of this is intuitive.  There are several steps to getting the information in the correct format.  Google maps (or other mapping programs) will give coordinates in decimal format.  To convert to Degrees Minutes Seconds in NAD27 use NADCON.  Site elevation can be found using free map tools elevation finder.  To determine the arc, a smart phone app such as Satellite Finder or Dish Pointer can be used.  If not actually on site, then Dishpointer.com can be used to determine the arc.

My best suggestion is to include as much of the arc as possible for each location.  The future cannot be predicted with any degree of accuracy and it is entirely possible that the current satellite position may not be used forever.

Wind damage

This satellite dish nearly broke off of its mount during a “macroburst” event.  According to the National Weather Service:

A macroburst is a thunderstorm downdraft affecting an area at least 2.5 miles wide with peak winds lasting 5 to 20 minutes. The macroburst is a straight-line wind phenomena not associated with rotation…used to differentiate from tornadic
winds. Macrobursts can produce as much if not more damage as tornadoes due to the size and scope of a macroburst.

On May 15th a large group of severe thunderstorms triggered at least three tornadoes and one macroburst event in eastern New York and Western Connecticut.  Winds in the macroburst area were estimated to be in the 85 to 105 MPH range.

The next morning, it took a long time to get the the clients studio.  Trees where down everywhere, roads were closed, traffic lights not working, etc.  This created numerous detours and traffic jams.  When I finally arrived at a clients studio facility, this was the first thing I noticed:

Comtech 3.8 meter dish with broken mount

Comtech 3.8 meter dish with broken mount

That is an older 3.8 meter comtech dish hanging on by one 3/8 inch stainless steel U bolt.  The funny thing is, they did not complain about this or the lack of satellite service.  The main complaint was that the studios were on generator and some of the lights and air conditioners were not working.

Comtech 3/8 inch stainless U bolt holding up 650 pound dish

Comtech 3/8 inch stainless U bolt sheared off

Comtech 3.8 meter dish support bracket twisted

Comtech 3.8 meter dish support bracket twisted

This dish had originally been put up when AMC-8 was the main commercial radio network bird in the US.  The dish elevation was only 9 degrees above the horizon, so this had to be put up next to the building at roof top level to clear the trees and see 139W.

I was attempting to secure the dish but in the end, the 650 pound dish was too tenuous and the weather was still unstable.  There was other damage to the dish thus we decided to take it down instead.  Even that took a bit of doing.  We were trying find a crane or bucket truck, but all that type of equipment had been pressed into service with recovery efforts.  We finally undid all the bolts and bracing and fell it like a tree.

Comtech dish on the ground

Comtech dish on the ground

The dish was then cut up and put in the dumpster.

The new satellite dish will be installed next to building in a lower position.

AM station downgrade

I have been working on another formerly direction class B AM station, this one is in Rutland, VT.  WSYB has been on the air since 1931 with the same call letters serving the east central part of Vermont.  In 1931, it was operating on 1500 kc with 100 watts of power.  In March 1941 it moved to 1490 kc with 250 watts before settling, a few months later, on 1380 with 1,000 watts, directional night time protecting CKPC in Brantford, Ontario, Canada.

The transmitter site was first located at 80 West Street (now known as BUS US 4), in Rutland.  It was moved to its current Dorr Drive (Formerly Creek Road) location in 1938, when the station was requesting a power upgrade to 250 watts.  Whilst cleaning out the old transmitter building, a copy of an operating log, dated December 7, 1945 was discovered in the attic above the transmitter room:

WSYB transmitter log, 1945

Back from the time when readings were required every 30 minutes.

In 1956, WSYB was allowed 5,000 watts daytime non-directional with 1,000 watts night time directional.

At some point in the early 1990’s, the original towers were replaced with solid leg Pirod towers, each 195 feet tall.

After that, things went the way things do; AM steadily declined in favor of FM, local programming was mostly replaced by syndicated satellite stuff, there were several transfers of ownership, etc.

A translator on 100.1 MHz was added in 2016; the two bay Shively antenna was installed at the top of the South West tower.   There is local programming on the station from 6am to noon on weekdays.  There may also be some gardening shows and other such programming on weekends.

The current owner has decided, like they have done in other markets, that AM directional antenna systems are a maintenance nightmare, the risk of FCC sanctions are high for an out of tolerance antenna array, the ratings and income from the station do not justify the risk/cost.  Thus, non-directional night time operation was applied for and granted.  The station is now a Class D with 25 ass kickin’ night time watts.

WSYB had a two tower night time antenna system.  The tower closest to the building (SW) was also the daytime, non-directional tower and it now holds the FM translator antenna and STL antenna.  Thus, it was decided to ground that tower and keep those antennas in service.  The far tower (NE), which was the second tower of the night time array would become the AM antenna.  The night time ATU was built for less than 1,000 watts input power, so several components needed to be upgraded for 5,000 watt operation.

WSYB rebuilt ATU

WSYB rebuilt ATU

I had available these nice vacuum capacitors that came out of another decommissioned antenna system.  The vacuum capacitors are great because the voltage/current ratings are much higher than the mica capacitors that were in the circuit before.  You can see black goop where one of the Sangamo mica capacitors on the input leg failed several years ago.  These vacuum capacitors are rated at 15 KV and the current rating at 1.38 MHz is probably in the 70-80 amp range.  I had to move the base current meter from the former daytime (SW) tower out to the NE tower.  The day night switch was taken out of the circuit.  The transmission line to the far tower was replace with 7/8 inch foam dielectric cable.  A slight touch up of the coil on the input leg of the T network was all that was required to bring it into tune.

The electric lines to the tower have been temporarily disconnected.  As soon as they are reconnected, I will vacuum out all the mouse crap and other debris.  The ATU building also needs some work sealing in up against the elements.

The tower base impedance is 75 ohms, +j95 making the base current 8.6 amps daytime and 0.58 amps night time.

WSYB radiating element

WSYB radiating element

For me, the magic of radio exists at that boundary between the real objects (towers and antennas) and the ether.  The transference of electrical voltages and currents into the magnetosphere is something that still fascinates me to this day.  Coupling a 5,000 watt medium wave transmitter to a tower and watching it work is something that I will never grow tired of.

Fixing another AM station’s antenna system

I have done several of these posts in the past, but it always seems to be of some interest, so it bears repeating.  AM antenna systems are not black magic.  They are actually pretty easy to understand if the fundamental knowledge is in place.  Medium Wave frequency wavelengths are fairly large compared to other broadcast frequencies.  Thus, the components are larger.

The three basic components of an AM antenna system are the tower, the ATU (antenna tuning unit) and the transmission line (AKA Coax).  The tower is the radiating element and they come in a variety of flavors; uniform cross section guyed, self supporting, series excited, shunt excited, etc.   A series excited tower has a base insulator and is fed directly from the ATU.  A shunt excited tower has a grounded base and uses a skirt or folded monopole design to transfer the RF to the main radiating element.  This design has an advantage as the tower can be used for other wireless and broadcast services.

The antenna work in question for this project is WINE, 940 KHz, Brookfield, CT.  The skirted tower is used for WRKI.  It also has two way and cellular clients.  The issue is instability of the WINE antenna system, which is likely due to improperly attached shorting wires between the skirt at the tower.  Over the years, the impedance of the skirt has gone way up.  The tower itself is 152.1 meters (499 feet) tall, or 170.3 electrical degrees.  The skirt length is about 82 electrical degrees and it is shorted at about 72 degrees.  There have been several papers written about folded monopoles for Medium Frequency (AKA AM or Standard) broadcast service.  The recommendations state that for best performance, the short to the tower should be between 62 and 90 electrical degrees.  Since the existing system falls in that range, there must be other problems with the antenna skirt and or shorting wire to the tower.

WINE skirted tower diagram

WINE skirted tower diagram

If one looks at this diagram, that configuration should look something like a gamma match, often used on dipole and yagi type antennas.  A gamma match can be thought of as a stub of transmission line which is bonded to the radiating element at some favorable wave length corresponding to the desired radiation resistance.  This is one of several configurations for folded monopole antennas and this type is most often seen on towers that support other wireless service antennas such as cellular and two way systems which are installed above the skirt.

There are a few interesting data points when looking at these type of antennas.  First is the ratio of the diameter of the skirt over the height of the tower, or D/H.  The larger this ratio is, the better the bandwidth characteristics of the antenna system are.  This makes sense, when you think about it. In this instance, the tower is 151 meters (495.4 feet) tall and the skirt is 3.3 meters (10.83 feet) wide, thus the ratio is 0.0218.

The licensed base impedance if 234 ohms with a good amount of inductive reactance. When Sprint and T-mobile changed their configuration on the tower, that impedance shifted dramatically.  The existing skirt is in fairly rough condition.  The bottom ring that connects to the ATU is made out of copper tubing.  It is attached to the skirt wires with steel saddle clamps, all are rusted and all of which are lose and can slide around.  At some point, the tubing filled up with water, then froze causing the tubing to split open.  At the top of the skirt, the jumper wire looks suspicious and the top ring does not go all the way around. The shorting stub to the tower looks like it is made out of battery jumper cable.  I purchased new cross wire clamps and found some spare copper weld skirt wire at another site.  Both the bottom ring and top ring were replaced as well as the shorting stub to the tower.

After the repair work was done, I had the tower crew reattach the short slightly below the last skirt to tower bonding point.  In that position, I found the impedance went way up.  Thus, going lower was going towards a resonance point.  I had them move the short up to the former shorting point and remeasured and found the impedance was 235 ohms, only 1 ohm off from the previously licensed values.

Initially, I thought it would be nice to find a better position for the shorting stub and get a lower base impedance.  This would make the whole antenna system work better (improve bandwidth, stability, etc).  However, there was a set of guy wires above the bonding point.  The tower crew would have had to disassemble the top ring to move above the guy wires.  We were running out of daylight and weather so I had them lock everything down where it was.  On a station running an all sports format that has no listeners and does not make any money, it does not make a lot of sense to spend gobs of money and time to rebuild the ATU for a new base impedance.  When I got the impedance back to within 0.11% of the licensed values, it was time to declare victory and go home.

Working with rigid transmission line

Installing transmitters requires a multitude of skills; understanding the electrical code, basic wiring, RF theory and even aesthetics play some part in a good installation.  Working with rigid transmission line is a bit like working with plumbing (and is often called that). Rigid transmission line is often used within the transmitter plant to connect to a four port coax switch, test load, backup transmitter and so on.  Sometimes it is used outside to go up the tower to the antenna, however, such use has been mostly supplanted by Heliax type flexible coax.

We completed  a moderate upgrade to a station in Albany; installing a coax switch, test load and backup transmitter.  I thought it would be interesting to document the rigid line work required to complete this installation.  The TPO at this installation is about 5.5 KW including the HD carriers.  The backup transmitter is a Nautel VS-1, analog only.

This site uses 1 5/8 inch transmission line.  That line is good for most installation up to about 10-15 Kilowatts TPO.  Beyond that, 3 inch line should be used for TPO’s up to about 30 Kilowatts or so.  Even though the transmission lines themselves are rated to handle much more power, often times reflected power will create nodes along the line where the forward power and reflected power are in phase.  This can create hot spots and if the reflected power gets high enough, flash overs.

Milwaukee portable band saw

Milwaukee portable band saw

Working with rigid line requires a little bit of patience, careful measurements and some special tools.  Since the line itself is expensive and the transmission line lengthener has yet to be invented, I tend to use the “measure twice and cut once” methodology.   For cutting, I have this nice portable band saw and table.  This particular tool has saved me hours if not days of work at various sites.  I have used it to cut not just coaxial line and cables, but unistrut, threaded rod, copper pipe, coolant line, conduit, wire trays, etc.  If you are doing any type of metal work that involves cutting, this tool is highly recommended.

Milwaukee 6230N Band Saw with cutting table

Milwaukee 6230N Band Saw with cutting table

Next point is how long to cut the line pieces and still accommodate field flanges and inter-bay line anchors (AKA bullets)?  The inner conductor is always going to be sorter than the outer conductor by some amount.   Below is a chart with the dimensions of various types of rigid coaxial cables.

Length cut chart for various sizes of rigid coaxial cables

When working with 1 5/8 inch rigid coax, for example, the outer conductor is cut 0.187 inches (0.47 cm) shorter than measured distance to accommodate the field flange. The inner conductor is cut 0.438 inches (1.11 cm) shorter (dimension “D” in the above diagram) than the outer conductor to accommodate the inter bay anchors. These are per side, so the inner conductor will actually be 0.876 inches (2.22 cm) shorter than the outer conductor.  Incidentally, I find it is easier to work in metric as it is much easier to measure out 2.22 CM than to try and convert 0.876 inches to some fraction commonly found on a tape measure.  For this reason, I always have a metric ruler in my tool kit.

Altronic air cooled 20 KW test load

1 5/8 inch rigid coax run to Altronic air cooled 20 KW test load

1 5/8 inch rigid coax and 4 port coax switch mounted in top of Middle Atlantic Rack

1 5/8 inch rigid coax and 4 port coax switch mounted in top of Middle Atlantic Rack

The next step is de-burring.  This is really critical at high power levels.  I use a copper de-burring tool commonly used by plumbers and electricians.  One could also use a round or rat tail file to de-bur.  The grace of clamp on field flanges is they have some small amount of play in how far onto the rigid line they are clamped.  This can be used to offset any small measurement errors and make the installation look good.

The Gibson Bass Guitar

Back in the days of my early adulthood, I found myself in various situations that were neither familiar nor followed any known script.  Thankfully, I seemed to manage those things without getting suckered too badly and/or causing too much trouble for myself or others.  Thus, when I was living in a barracks building and one of the other guys asked me to loan him $100.00 until pay day, I deferred.  Lending money to anyone is fraught with danger and in 1983 or 1984, $100.00 was worth quite a bit more than it is today, especially for a junior enlisted guy like I was at the time.  A few hours later, the same fellow approached with a different arrangement; I would lend him $100.00 and he in turn would give me his Bass Guitar to hold onto until he paid me back.  I looked at the rather nice Gibson Grabber bass complete with road case and said okay.

Now, this guy took that $100.00 and for some reason that was never clear, stole his room mate’s car that night and went UA.  He was arrested a few days later some distance away near the border to another state.  He never returned to me my $100.00 and I never returned to him his guitar.

1978 Gibson Grabber Bass Guitar with original hard road case

1978 Gibson Grabber Bass Guitar with original hard road case

Over the ensuing years, I have picked this instrument up and fooled around with it from time to time.  I even learned how to plunk along with some easier songs like Louie Louie.  It was never serious and for the last twenty or so years, it sat unused in the back of a closet.  A few days ago, while cleaning up, I noticed the road case sitting there.  A little bit of research reveals that it was made in 1978 at the Gibson Guitar factory in Kalamazoo, MI.  As it is in good condition with the original case, appears to be worth a bit of money.

I took some time and cleaned it up.  One of the pots was a little scratchy, so I cleaned it with a bit of Deoxit.  I took the bridge apart and cleaned it, removed the pick guard and pickups and cleaned those thoroughly.

Gibson Grabber on stand

Gibson Grabber on stand

Being the curious type, I started fooling around with it again.  I then found a few Youtube videos on how to play bass.  I watched those along with some other learning tools.  I began to practice scales.  This turns out to be kind of fun.  I do remember how to read music, although I would need to brush up on this skill somewhat if I want to become an actual bass player.  I purchased a small Fender Amp, a scale chart and a clip on tuner and we are off to the races.  I wonder how the electric bass translates to a stand up bass.  I could forgo the Rock ‘n Roll experience completely, but if I get good enough, I’d really like to play in a Jazz band.  A boy can dream…

Happy New Year!

After a bit of reflection and a few good conversations over the New Year’s Holiday, I decided that I should continue my work on this blog.  I would like to thank all those that have stuck by and waited.  I have received numerous emails and messages off line, all of which have been read and appreciated.

Since the abrupt stoppage last July, which was absolutely necessary for me, many things have happened within the business.  Fortunately, during the hiatus, I was still taking pictures.  After sorting through them, here are a few interesting things that happened:

At one of our client’s AM transmitter sites in Albany, NY a 2.6 Million Watt solar system has been installed.

WROW-AM Steel mounting poles on antenna array field

WROW-AM Steel mounting poles on antenna array field

This project required many steel mounting posts be driven into the ground around the AM towers.  I don’t even know how many, but I would hazard a guess of over three hundred.  Each one of those mounting posts was hand dug down a depth of 6-10 inches to look for ground wires.  Where ever a ground wire was found, it was moved out of the way before the post was set.

WROW-AM ground wire moved out of way

WROW-AM ground wire moved out of way

Basically the solar array covers about 1/2 of the antenna array field.  All of the steel mounting hardware is tied into the ground system, making, what I am sure is a pretty large above ground counterpoise.

WROW-AM solar panel mounting hardware

WROW-AM solar panel mounting hardware

View from the south looking north:

Solar Array installed on WROW antenna array, Glenmont, NY

Solar Array installed on WROW antenna array, Glenmont, NY

View from the north, outside of the transmitter building, looking south:

Solar Array installed on WROW antenna array, Glenmont, NY

Power company interface and disconnect:

Solar Array utility company disconnect, Glenmont, NY

Solar Array utility company disconnect, Glenmont, NY

The utility company had to upgrade the transmission lines to the nearest substation to handle the additional power produced by the solar system. All in all, it was a fun project to watch happen.

At a certain studio building, which is over 150 years old, the roof needed to be replaced.  This required that the 3.2 meter satellite dish and non-penetrating roof mount be moved out of the way while that section of the roof was worked on.

3.2 meter satellite dish

Dish ready to move, all of the concrete ballast removed and taken down from roof.  The roofing contractors constructed a  caddy and the entire dish and mount was slid forward onto the area in front of it.  Since the front part of the roof was not reinforced to hold up the satellite dish, we did not reballast the mount and the XDS receivers ran off of the streaming audio for a couple of days until the dish was put back in its original position.

3.2 meter satellite dish ready to move

3.2 meter satellite dish ready to move

A couple of other studio projects have been underway in various places.  Pictures to follow…

One of our clients sold their radio stations to another one of our clients.

There has also been a bankruptcy of a major radio company here in the good ol’ US of A.  Something that was not unexpected, however, the ramifications of which are still being decided on in various board rooms.  One of the issues as contractors is whether or not we will get paid for our work.  All things considered, it could be much worse.

Learned a valuable lesson about mice chewed wires on generator battery chargers.  I noticed that the battery charger seemed to be dead, therefore, I reached down to make sure the AC plug was in all the way.  A loud pop and flash followed and this was the result:

Arc burns, right hand

Arc burns, right hand

My hand felt a bit warm for a while.  The fourth digit suffered some minor burns.  There is at least one guy I know that would be threatening a lawsuit right now.  Me, not so much…  All of the high voltage stuff we work on; power supplies that can go to 25 KV, and a simple 120 VAC plug is the thing that gets me.

The return of the rotary phase maker.

Rotary phase maker, Kay Industies T-10000-A

Mechanically derived 3rd phase used when the old tube type transmitter cannot be converted to single phase service.

Those are just a few of the things I have been working on.  I will generate some posts on current projects underway.  Those projects include a 2 KW FM transmitter installation, another studio project, repair work on a Harris Z16HD transmitter, etc

It is good to be back!

Uhm, eh-hem. Is this thing on?

Just checking…

The GatesAir FLX-40 transmitter

The GatesAir FLX-40 transmitter is my first liquid cooled transmitter installation.  Previously, I have installed an air cooled Nautel NV-40, a V-40 and a couple of BE FM-35T/20T units.  The WEBE transmitter site in Bridgeport, Connecticut is an interesting facility.

Smoke Stack, Bridgeport Energy, Bridgeport, CT

Smoke Stack, Bridgeport Energy, Bridgeport, CT

This coal fired power plant smoke stack which currently holds up the six bay, half wave spaced Shively antenna.  The old BE FM35A transmitters are getting little bit long in the tooth.  Thus, we picked one to scrap, the other will be kept for backup service.

Scraping 34 year old BE FM30A transmitter

We saved a whole bunch of parts to keep the other FM35A on the air in backup service.

BE FM30A power supply cabinet

The power supply cabinet with that 500 pound plate transformer was the last to go.

On second thought, that plate supply transformer is a good spare to have

On second thought, that plate supply transformer is a good spare to have

The FLX-40 came on a large truck.  Fortunately, we were able to open the side gate at the power plant and get the truck to the front door of the transmitter building easily.  The transmitter consists of two large cabinets, each with two 10 kilowatt power blocks.  There is also a pump station and an outdoor heat exchanger.

FLX-40 cabinet two off the truck

FLX-40 cabinet two off the truck

FLX-40 cabinet one

FLX-40 cabinet one

FLX-40 in place, cabinets bolted together

FLX-40 in place, cabinets bolted together

This transmitter design is based on the Harris digital TV transmitters.

FLX-40 pump station

FLX-40 pump station

The pump station and heat exchanger are the same systems used for TV transmitters.  Liquid cooled units require a bit more planning on the installation end.  The coolant piping should have a high spot from which everything else slopes down hill.

Send and return coolant lines

Send and return coolant lines

I put a 1/4 to 12 inch pitch on everything.  Of course, there are several low points, the heat exchanger, pump station and bottom power blocks.

Holding steady at 18 PSI for 24 hours

Holding steady at 16 PSI for 24 hours

After assembling the cooling system, we pressure tested it for 24 hours.

Installation debris in the coolant line strainer

Installation debris in the coolant line strainer

Following that, we flushed the system with distilled water for several hours before we filled it with 40/60 glycol/water mix. Record low temperature in Bridgeport is -7 F (-22 C), thus a 40/60 mix will give protection down to -15 F (-26 C). The more water in the coolant, the better heat transfer capacity it has.

At the highest point in the system, there is a sight glass and an air purge valve

At the highest point in the system, there is a sight glass and an air purge valve

The pump station is controlled by the transmitter, which speeds up the pumps according to how much heat needs to be moved. In turn, the pump station control the fan speed on the heat exchanger outside.

FLX-40 pump station on line

FLX-40 pump station on line

The pump station runs with one motor most of the time. The other pump motor will run in the event of failure or if there is not enough flow through the power blocks. Each of the four power blocks has a flow rate meter on the return line.

Heat Exchanger Fan motor controllers, Variable Frequency Drive modules

Heat Exchanger Fan motor controllers, Variable Frequency Drive modules

Variable Frequency Drive (VFD) fan motor controllers show them running at half speed.

50 KW heat exhanger

50 KW heat exhanger

GatesAir 50 KW heat exchanger mounted on concrete pad behind the building. Air flows out from the motor side.

One of several shipping containers with modules and other parts for the FLX-40

One of several shipping containers with modules and other parts for the FLX-40

As with most things, some assembly required.  The RF modules needed to be placed in the power blocks according to their serial numbers on the test data sheet.  This insures that the information on the test data sheet matches the installed transmitter configuration.  The power combiner between the two cabinets as well as the reject load and directional coupler all need to be installed.

RF modules with large aluminium heat spreaders.   Coolant flows through each module.

FLX-40 power amp module

FLX-40 power amp module

WEBE, Bridgeport, CT GatesAir FLX-40 on the air for the first time

WEBE, Bridgeport, CT GatesAir FLX-40 on the air for the first time

On the air!

FLX-40 into the antenna

FLX-40 into the antenna

We ran the transmitter for several hours into the antenna yesterday afternoon. The coolant system is still purging air, so we periodically needed to add water/antifreeze to the pump station to keep the pressure between 12-18 PSI. Eventually, the TPO will be 34 KW with the HD carrier(s).

All in all, I would say that this was a fun project. The liquid cooled transmitter had a few extra steps during the installation process, but not too difficult.