Archive

July 2016
M T W T F S S
« Jun    
 123
45678910
11121314151617
18192021222324
25262728293031

Categories

Downgrading an AM radio station

WGHQ in Kingston, NY has been downgraded from a 5KW DA-1 to a 1KW non-DA system.  This was done because two of the three towers in the directional antenna array dated from 1960, were in very rough condition and needed to be replaced.  The remaining tower (furthest from the transmitter building) had been replaced in 1994, is in good condition and is being kept as the non-directional radiator.

Here are a few pictures:

WGHQ 3 tower directional antenna array, Port Ewen, NY

WGHQ 3 tower directional antenna array, Port Ewen, NY

More deferred maintenance

More deferred maintenance

RF and tower light feed disconnected from tower base

RF and tower light feed disconnected from tower base

Second tower base vegetation not as bad, tower disconnected

Second tower base vegetation not as bad, tower disconnected

WGHQ transmitter and original Collins phasing cabinet

WGHQ transmitter and original Collins phasing cabinet

First tower video (sorry, I appear to have no idea what I am doing with the camera):

Second tower video, this one is better:

Towers on the ground:

I made measurements on the third tower and constructed a temporary ATU with parts on hand to get the station back on the air. They are now running 1 KW day, 38 watts night, as per their CP. I will be going back up to finish the job once the brush has been removed from around the existing tower and the ATU building has been repaired.  The coverage with 1 KW is not bad, actually:

Predicted coverage map from FCC website

Predicted coverage map from FCC website

The translator is on its way.

Hitchhiker’s guide

Anyone that grew up a geek in the late 70’s to early 80’s (ahem) will get the references in this video:

For those of you that are unfamiliar:

The Hitchhiker’s Guide to the Galaxy is a comedy science fiction series created by Douglas Adams. Originally a radio comedy broadcast on BBC Radio 4 in 1978, it was later adapted to other formats, including stage shows, novels, comic book adaptations, a 1981 TV series, a 1984 computer game, and 2005 feature film.

I was most familiar with the video game, which came out about the same time I bought my first computer, the beloved Apple IIc. That might have been in 1986 or so.

Anyway… It is nice to see a new generation of enthusiasts among the current Engineering students.

So long, and thanks for all the fish.

The Ubiquiti Nano-Beam

I installed one of these wireless links between two transmitter buildings recently.  The Ubiquiti gear is not my first choice, however, the client insisted that we use this equipment likely because of its inexpensive nature (less than $65.00 per unit).  My overall impression is so-so.  They are fairly easy to set up; the AirOS is intuitive and easy to navigate around.  I had to upgrade the firmware, change the default user name and pass word, assign IP addresses, subnet mask, gateway information, SSIDs, security parameters, etc.  All of that was very easy to figure out.  My grip is this; it seems the hardware is a bit plastic-y (e.g. cheep).  I know some of the Ubiquiti models are better than others.  I hear good things about the airFiber units but they still don’t compare to the Cambium/Canopy gear.

For this installation, I used the shielded Ubiquiti “Tough Cable” with the shielded Ubiquiti RJ-45 connectors and Ubiquiti Ethernet Surge Protectors.  When making the Ethernet cables up, I made sure the shield drain wire was connected to the metal body on the RJ-45 connector.  I tested everything with my trusty Fluke Microscanner cable verifier which also shows continuity for the shield.  I am still not completely confident that the out door units will survive a lightning strike on the 898 foot (273.7 meter) guyed tower nearby.  Time will tell.

The system has a wireless path length of about 200 meters plus another 60 meters or so of Ethernet cable.  Latency when pinging the gateway across the entire network is about 3 to 4 ms (laptop>switch>nanobeam<->nanobeam>switch>gateway).  The network is being used for remote control/monitoring of a transmitters and backup audio via Comrex Bric link II IP CODECs.

screen shot; Nano Beam Air OS

screen shot; Nano Beam Air OS v7.2.2

On the plus side, the 802.11ac link is very fast; 650+ Mbps unwashed link speed is pretty impressive.  Strip off the wireless LAN headers and that likely translates to greater than 500 Mbps goodput.  Also, the inexpensive nature of these units means that we can keep a few spares on hand in case something does suffer catastrophic damage due to a storm.  The AirOS v.7 is pretty cool with the RF constellation and other useful tools like airView (spectrum analyser with water fall display), discover, ping, site survey, speed test, trace route and cable test.

After installing the updated firmware, which fixes a major security flaw with the web interface, the link was established with three mouse clicks.  After that, I ran speed tests back and forth for several minutes.  Basically, the speed on the LAN is reduced because of the 100 Mbps switch.  Even so, that should be more than enough to handle the traffic on this segment of the network.

Picking your feet in Poughkeepsie?

Why yes, I have done that and it can be quite entertaining.  The FCC has graced our humble presence and apparently cracked down hard on one of those pie-rite types:

The New York Office received information that an unlicensed broadcast radio station on 87.9 MHz was allegedly operating in Poughkeepsie, New York. On January 14, 2016, agents from this office confirmed by direction finding techniques that radio signals on frequency 87.9 MHz were emanating from the basement of El Patron Restaurant, located at 411 Main Street, Poughkeepsie, New York. The Commission’s records show that no license was issued for operation of a broadcast station on 87.9 MHz at this location in Poughkeepsie, New York.

More here.

Hot Snot! One down and several to go? What is also interesting is the frequency; 87.9 MHz. That falls outside of the frequency range of the NY State anti-pirate law passed in 2011. That well crafted bit of useless legislation only covers 88-108 MHz.

If you are wondering about the title, it is from the movie “The French Connection:”

This is how I imagine those rough enforcement bureau types interrogating a busted pirate. Well, at least back in the days of Alexander Zimny and Judah Mansbach anyway.

That video is hilarious, back in the day.

Decommissioning transmitters

I was at a transmitter site a few days ago scrapping a Continental 814-R1 transmitter and started thinking (always a dangerous thing) about how many of these units I have decommissioned over the years.  It turns out, quite a few:

Make/Model Year new* Year removed Station Disposition
GE BT25A 1948 1994 WPTR Donated/scrapped
Gates BC5P 1960 2004 WWLO Donated
Harris MW5A 1982 2000 WLNA Scrapped
Gates BC1T 1961 2001 WLNA Donated
Harris FM20H3 1972 2001 WYJB Scrapped
RCA BT1AR 1960 2001 WROW Donated
Harris BC1G 1972 2001 WDFL Abandoned
Harris FM20H3 1971 2005 WHUD Scrapped
BE FM30A 1988 2005 WHUD Cannibalized
Harris FM5G 1972 2008 WSPK Scrapped
Mc Martin BF3.5K 1976 2011 WCTW Scrapped
RCA BTF-10ES 1978 2011 WRKI Scrapped
Gates BC1T 1964 2011 WINE Scrapped
Continental 315F-R1 1985 2013 WVMT Donated
Collins 813F 1975 2014 WKXZ Scrapped
RCA BTA1AR 1965 2014 WCHN Scrapped
Collins 813F2 1978 2015 WKXZ Scrapped
Collins 830D-1A 1968 2014 WKXZ Scrapped
Harris FM20H3 1972 2013 WYJB Scrapped
Harris BC5HA 1973 2013 WROW Scrapped
Harris FM10H 1971 2013 WMHT-FM Scrapped
Harris FM2.5H3 1973 2015 WEXT Scrapped
Mc Martin BF3.5K 1972 2014 WSRK Scrapped
CCA FM5000G 1980 2015 WTBD Scrapped
RCA BTF1E 1972 2016 WZOZ Scrapped
QEI 695T3.5 1996 2015 WBPM Scrapped
QEI 695T5 1996 2015 WBPM Scrapped
Harris HT3.5 1997 2015 WUPE-FM Scrapped
Harris Z5CD 1997 2015 WXPK Cannibalized
Energy Onix SSA1000 2000 2015 WDHI Cannibalized
Harris MW1 1982 2016 WPUT Abandoned
Mc Martin BF1K 1982 2016 WSUL Scrapped
Mc Martin BF3.5K 1982 2016 WSUL Scrapped
Continental 814R1 1980 2016 WDBY Scrapped

*In some cases the “Year New” is a guess based on when the station went on the air.  Before you write me and say “But model XYZ transmitter wasn’t made until 19XX, I did not look at every name plate and write all the information down as I did this.

Like everything else, there is a process to this.

RCA BTA-10U AM transmitter

RCA BTA-10U AM transmitter

First of all, if the transmitter was made before 1978, the possibility of PCB capacitors and transformers exists. In the case of the GE BT25A, massive amounts of PCBs needed to be disposed of properly. According to current federal laws, ownership of PCBs and PCB contaminated items cannot be transferred. Thus, the transformer casings were cleaned out and taken to Buffalo to be buried in a PCB certified landfill.   Otherwise, most other transmitters, such as the RCA BTA-10, may have a few PCB capacitors in them and perhaps the modulation transformer.  Those items can be disposed of by calling an authorized environmental disposal company like Clean Harbors.

The rest of the transmitter is stripped of any useful parts.  Things like vacuum variable capacitors, rectifier stacks, blower motors (if they are in good condition), HV power supply contactors, unique tuning parts, whole control and metering boards, tube sockets, etc.

The remaining carcase is then disassembled and hauled off.  I got a guy that will do this for relatively little money.  He takes the transmitter back to his warehouse and cuts it up, sorts all of the various metals out, then takes it to the scrap yard.  This includes things like cutting all of the windings off of transformers and power supply chokes, sorting out the brass and copper tuning parts, etc.

Remember kids:

μ = 1/1,000,000, 10-6 or 0.000001

Microaggression: If the worst thing that happened to you is you suffered through one millionth of an aggression, you are having a pretty good day.

The 16 channel bi-directional STL

As a part of our studio build out in Walton, we had to install a high capacity STL system between the studio and transmitter site. Basically, there are five radio stations associated with this studio and the satellite dish and receivers are going to be located at the transmitter site.

The audio over IP gear is getting really sophisticated and better yet, more reliable.  For this application, we are using a Cambium networks (Motorola Canopy) PTP-250 radio set and a pair of Wheatstone IP88 blades on either site.  Since there is quite a bit of networked gear at the transmitter site, the IP88’s will live on their own VLAN.  The PTP-250’s will pass spanning tree protocol, rapid spanning tree protocol, 802.1Q and other layer two traffic.

The Wheatsone IP88A blades are the heart of the system.  Not only do they pass 16 channels of audio, we can also pass 8 logic closures bi-directionally.  This is key because we are shipping satellite audio and contact closures back from the transmitter site.  The IP88A set up is fairly easy, once the IP address is entered.  The web GUI is used for the rest of the configurations including making the connections between units.

Pair of Wheatstone IP88A AoIP interfaces

Pair of Wheatstone IP88A AoIP interfaces

The switches are managed units.  The switchports need to be set up via command line to pass VLAN traffic.  There is an appendix in the IP88 manual that outlines how to do this with various manages switches.  This is the most important step for drop out free audio.  The switchports that connect to the two radios are set up as trunk ports using either VTP or 802.1Q.

Cambium PTP-250 5.8 GHz out door units

Cambium PTP-250 5.8 GHz out door units

The PTP-250 radios were already on hand, new in box.  They are built really well and look like they should not break in a year or so.  These particular units are connectorized, therefore an external antenna was needed.  There are many such antennas, this system ended up with a RF Engineering & Energy 5150-5850 MHz dual polarized parabolic dish with RADOMES.  RADOMES are necessary to prevent ice or snow build up in the winter.

RF Engineering & Energy 5150-5850 MHz dual polarized parabolic dish with LMR400 jumpers

RF Engineering & Energy 5150-5850 MHz dual polarized parabolic dish with LMR400 jumpers

STL link dish installed

STL link dish installed

1 1/2 inch EMT going from TOC to roof

1 1/2 inch EMT going from TOC to roof

Since the path is only 3.37 miles (5.43 kilometers), I set them up with a 40 MHz wide channel.  This is a rural, small town setting.  When I looked at the 5.8 GHz band on a spectrum analyser, it looks fairly uncongested.  These are MIMO single or dual payload selectable.  I will try them as single payload units, since the path is short and the band uncongested.  This should keep the throughput high.

Studio to transmitter site LAN extension

Studio to transmitter site LAN extension

The PTP-250’s use POE injectors in mounted in the rack rooms.  CAT5e shielded cable with the proper connectors properly applied is a must for lighting protection.  The PTP-250 units came with Cambium PTP-LPU lightning protectors.  I also installed Polyphaser AL-L8XM-MA type N surge suppressors on each RF port of each PTP-250.

Engineers hate this

Apparently, this coaxial cable has a hot spot:

7/8 inch air dielectric coax with jacket melting off

7/8 inch air dielectric coax with jacket melting off

The back story:

I received a text this morning that one of our clients station “had a lot of static on it, it might be off the air.” Upon arrival, I found the Nautel VS2.5 transmitter with 0 watts forward power and an output network fault. Reset the transmitter and the forward power and reflected power increased together, triggering another output network fault. I was able to turn the transmitter power down to 100 watts, at which point it stayed on, with 50 watts reflected power.  I also noted the dehydrator running continuously and 0 PSI line pressure.

Crap.

I wandered around the back of the building where the coax goes out to the tower and discovered the dripping plastic from the melted jacket.  I reached up and first checked the cable to see if it was warm (it was not).  Then I shook it and heard what I thought was water sloshing around inside.  This is the original Andrew 7/8 inch cable from when the station signed on in 1972 or so.  Very likely that further up the tower, something has chaffed through the outer jacket and shield, allowing water into the cable.

I drilled a small 5/32 inch hole at the lowest point in the cable before it enters the building.  The result was a steady stream of water, which was aided by some additional pressure from a spare N2 tank.  I let it drain while I ran down to town and got some lunch.  I came back a half an hour later, turned the transmitter on and was satisfied to see 100 watts forward power with 1 watt reflected.  I ran the transmitter up to full power for a while, then deciding discretion is the better part of valour, turned it down to half power; 820 watts which nets 8 watts reflected power.

Needless to say, the transmission line needs to be replaced as soon as possible.

Came as a stock item

So, I wore out another car and it was time to get a new one. Unexpectedly, the new car came with one of these fancy gizmos:

HD Radio as a stock item

HD Radio as a stock item

This is not the first HD radio I have owned, the Jeep Cherokee had one that I install myself. This is the first time it came with the car and I didn’t even mention it to the sales guy.

A few observations:

  • Many stations’ HD1 channels don’t sound very good, they are either shrill and tinny, or not synced with their analog counterpart.
  • There still aren’t very many station transmitting HD Radio; FM stations are either NPR affiliates or belong to a few larger corporate owners.  The AM stations are few and far between.
  • AM HD Radio still has numerous problems in the mobile listening environment.
  • Many of the HD 2/3 don’t sound very good; low audio levels, muffled modulation, low bit rate audio, etc.  The only exception that I have found so far is Vermont Public Radio’s classical format, transmitted on the HD2 of WVPS, Burlington.
  • HD2/3 channels mainly serve as “translator loophole” stations, AKA “Metro Stations”

As far as the new ownership by DTS goes; I will reserve judgement until they do something with it.

Common’ Baby

Who is that old guy standing next to Chubby Checker?

Chubby Checker and yours truly

Chubby Checker and yours truly

Hey, that’s me!

And never will you meet a nicer gentleman than Chubby Checker.