I Audited the RF Noise in my House

The largest problem facing analog AM broadcasting (and digital Medium Frequency and High Frequency broadcasting) is RF Noise.

Like most people, I have many modern conveniences that make my life easier than previous generations; electric lights, central heat and air conditioning, appliances like vacuum cleaners, microwave ovens, and whatnot. I enjoy the wireless internet, have an LED TV, use LED light bulbs, and get free electricity from my photovoltaic solar system. These devices can contribute to the high levels of RF noise found in most buildings. RF Noise which is the bain of AM broadcasting. Digital modulation schemes use variations in amplitude to transmit data bits. They are not immune to RF noise, they simply mask it better until they don’t.

I thought it would be interesting to isolate the various noise generators that may be present.

To make measurements, I used the Siglent SVA-1032X spectrum analyzer. This unit has a noise floor of -140 dB. My methodology is to turn everything off except the Device Under Test. Set the spectrum analyzer up for a wide band sweep, then narrow the bandwidth on any detected noise. Turn the DUT off to make sure that the noise goes away. Turn the DUT back on to make sure that the noise comes back.

The first thing I noticed; there is more noise during the daylight hours than at night. This is interesting. I thought it might be coming from my solar system, which uses individual inverters for each panel (so-called microinverters). These are wired to 240 VAC but have an internet gateway device that is in the house and communicates with the inverters using a power line data scheme. It turns out this was a minor contributor below the AM broadcast band.

By process of elimination, here are things that were not contributing to RF noise on Medium Frequency (AM band):

  • Cable Modem (Motorola MB7420 DOCSIS 3.0)
  • Router/WiFi gateway* (Netgear R6700v2)
  • GB Ethernet Switch (Netgear TLSG116E)
  • Dell Desktop PC’s (three models)
  • Dell Laptop PC (two models)
  • Android phones (two models)*
  • Phillips 4K LED large-screen TV (5PFL5604/F7)
  • LG LED computer monitor (24MK430H-B)
  • Refrigerator (Frigidaire FFTR1835VSD)
  • Stove (GE BP63D W1WH)
  • LG washing machine (WM3400CW)
  • LG clothes dryer (DLEX4501)
  • Bosch dishwasher (SGV68U53UC)
  • Dehumidifier (GE APEL70LTL1)
  • LED light bulbs (Sylvania 9W Ultra LED)
  • Generic incandescent light bulb
  • Furnace (fancy controller)
  • Furnace burner motor**

*These are intentional RF emitters

**The furnace burner motor made a small broadband RF signal on startup, likely the igniter which uses an electric arc. Once the unit was running, there was no further RF emissions noted.

Medium Frequency baseline noise level

The yellow line is the peak hold, the magenta line is the 100 sweep average and the cyan line is the minimum peak hold. I live out in the sticks; there are no streetlights, no stoplights for miles, the nearest cellphone site is four miles away, and houses are spaced far apart.

First, I measured the noise with everything turned off. I then turned things on one by one, noting any changes in the spectrum. For the list noted above, this is the way it looked.

These are a few things contributing to RF noise levels on the MF band.

We have cheap Chinese grow lights to start seedlings for our vegetable garden. We were using these during the daytime hours to augment the low sunlight in early spring. I initially thought this was coming from the solar system. The interference was making a massive noise hump between 750 and 957 KHz. The brand of growlight is BestVA B-1000 LED which was purchased from Amazon.

RF noise from Grow Light

Next, somewhat surprisingly, the LG computer monitor on my desk was creating a pretty decent rise from 1120 KHz to 1700 KHz. I have three LG computer monitors, this is the newest only this one creates any RF noise.

LG 240P500 LED monitor

Then, pretty much every florescent lamp (compact or full-length tube) created a broadband noise increase across the entire MF band and well into HF.

Florescent lighting

The vacuum cleaner makes a little bit of broadband RF noise when near the receiver. However, you cannot hear the radio when the vacuum is running, so that does not seem to matter.

None of these are surprising. However, I was more surprised that many other electronic devices are not contributing to RF noise in my house.

A little bit about data over power line or power line communications. Searching for power line data can be a bit tricky. First, there is this large voltage 60 Hz (plus harmonics) waveform to deal with. Secondly, there are many different protocols and many different frequencies. I narrowed down my solar system by listening to my Kenwood R-2000 below 300 KHz. Some noise went away when I completely disconnected the inverters. I don’t know the exact frequency, the protocol, the modulation type, etc. But there is something.

Data Over Power line is popular with home automation systems, it can be used to extend Ethernet LAN, and some power companies are using it to control substation equipment, smart power meters, and/or to function as an ISP for their customers. I have heard some HF users complain about BBPL, but I have not experienced it for myself.

The Nautel J-1000

I Finished up this installation of a J-1000 in Brookfield, Connecticut for Nossa Radio. That is a Portuguese broadcaster that owns three other stations in the US.

WINE 940 KHz Brookfield, CT

These Nautels are fairly simple affairs; a controller and two RF amps with incumbent power supplies.

Nautel AM-RF and AC mains surge suppressor

Be sure to install the surge suppressor that comes with the transmitter.

The J-1000 is replacing the 43-year-old Harris MW-1A which will function as a backup. Like all new transmitter installations; some things must be done to complete the job.

Harris MW1A

Harmonic measurements out to about the 5th or 6th harmonic need to be documented and compliant with NRSC-2 (AM mask requirements). Although NRSC-2 measurements are required, I don’t see how they can enforce that specification after AM HD radio came into being. Nevertheless, it was measured and passed. With the station carrier power of 680 watts, I used the RF monitor port on the back of the transmitter to make the measurement. Otherwise, I would need to find an empty field somewhere 1 KM away and stand in the middle of it to reduce all of the electrical noise.

Spectrum Mask from a Spectrum Analyzer

The NRSC-2 mask is mainly a function of High-Frequency limitation in the audio processor—certain transmitters, like the aforementioned MW1A did make some contributions to out-of-tolerance measurements.

NRSC-2C AM mask requirements
Harmonics measurements
WINE folded unipole feed point

The antenna is a skirted tower that has many other services colocated on it. At the top is WRKI.

WINE ATU
WINE daytime coverage map

Driving away from this site, I would have to agree with the predicted contour map above, at least on the highway. I think it may be a bit different driving around in town.

WKIP; removal of the taller tower

This is the original tower for WKIP, but not the original antenna. It was put up circa 1960 or so and like many towers from that era, has hollow legs. Thus, after 60 years or so, it is deteriorating from the inside out.

WKIP tower #1

This was part of a two-tower directional array. It is odd that a class C station on 1,450 KHz would have a directional antenna at all. Even stranger still, it was directional daytime, non-directional night, both at 1,000 watts. The reason for such an odd situation; the station was co-owned with WGNY in Newburgh and the daytime coverage contours would have overlapped without a directional array. The taller tower is 215 degrees tall with top loading. During the daytime, the pattern goes to the North and it covered very well.

Vertical Bridge, the tower owner, decided it was time to replace the aging structure with a monopole. They are completing the project this summer. Our part is to move WKIP to the shorter tower and put up a temporary FM antenna for the translator. Once the project is completed, WKIP will operate from the shorter tower (which is 85 degrees) permanently, getting rid of the now unnecessary directional antenna on a class C channel. The translator antenna will move back to the monopole, once it is put up.

Problems… Yes, we have a few of those…

WKIP tower #2 with broken guy wire

First, the short tower had a broken guy wire. Actually, the guy wire was fine, but the lowest grip connecting to the equalizing plate was rusted through. It is fortunate that this was discovered because the upper guy wire was getting ready to let go too. Northeast Towers was able to replace all of the grips on that set of guy wires and re-tension the tower. They did a full investigation of all of the other anchors prior to any climbing. This is in a swamp, which has flooded several times over the last few years.

Tower #2, guy wire repaired, Scala FMVMP translator antenna mounted

Next, the temporary FM translator antenna was hung on the tower. It was thought that the 3/8 sample line from the old AM sample system could be used as a temporary transmission line for this system. Unfortunately, that line turned out to be 75-ohm cable TV drop line and was not suitable for transmission of VHF. We had about 600 feet of leftover 3/8 sample line (Cablewave FCC 38-50J) from a decommissioned AM site, so we used that instead. It has quite a bit of loss on VHF, however, for temporary use, it will work.

Black Rat Snake, harmless and helpful
Black Rat Snake

Next, it seems this black rat snake had taken up residence in the ATU cabinet. The bottom of the ATU was full of mouse nests going back many years. One of our employees dutifully cleaned out the mouse nests unknowingly under the watchful eyes of this snake. Only after he was done, did he see the snake coiled up on the disused current meter shunt. There was a mild freakout for several minutes, but the snake left on his own and we got back to work. The black rat snakes are helpful to have around, but perhaps best if he stays outside of the ATU. We will seal up the entryway for the coax, which seems to be where all the critters are coming in.

Kintronic ISO-130-FM-N Isocoil

This Kintronic Isocoil was mounted to the back of the ATU with unistrut. Even though this is a temporary installation, I have found that sometimes temporary things can last much longer than anticipated. Besides, it was easier than trying to use pressure treated 4 x 4 lumber.

Next, we measured the ATU with the fancy machine (Agilent E5061B network analyzer). In theory, the ATU input should be 50 ohms to match the incoming transmission line. No, instead it was 38 Ohms -j20.

So, a little bit of a retune was required. With the fancy machine, we were able to get it to 52 ohms -j9 or so. This is good enough for now, there will be numerous cranes in the air and the station has an STA to run at 250 watts for the project’s duration. After the new monopole is up, we will measure the base impedance of the tower and tune up the ATU for 50 ohms and then return the station to full power at 1 KW.

Smaller crane, used to assemble the larger cranes

The old tower coming down:

Top section and top loading wires separated

Two cranes were used; one to hold and lower the tower section, the other to lift two tower workers to cut away the sections. The tower was deemed unsafe to climb, therefore it had to be removed like this. It was also unsafe to drop because of the proximity to the studio building and the other tower, which is being retained.

Top section being lowered
Next section removed and being lowered
Next section removed

You get the idea. These tower sections and guy wires were cut up and put in a scrap metal dumpster. They will be recycled into something else.

Now, they will work on removing the old tower base and putting up the monopole. Once that is done, we will tune up the AM on the short tower and get it back to full power.

On the subject of All Digital Medium Wave

I want to explore all digital modulation methods for Standard Broadcast (AM, Medium Wave, or Medium Frequency). The most pressing technical problem for AM reception is electrical impulse noise. Can digital modulation solve this problem? Perhaps, but I am a natural-born skeptic.

To start out; I will say up front that the hybrid HD Radio (MA1) employed on AM was (or still is) a travesty. It never worked very well and it created massive interference +/- 20 KHz of the assigned frequency, especially when employed at night. Secondly; the all-digital version of HD Radio (HDMA3) remains a proprietary system with non-standard codecs. The current owner, Experi, has a license fee structure based on station type (AM, FM, LPFM, or Non-commercial) which ranges from $5,000 to $10,000 one-time fee for a five-year period. In all fairness; DRM pays a technology license fee to Fraunhofer for MPEG codecs used by receiver manufacturers and broadcast equipment. This is estimated to be between $0.13 to $1.13 US per receiver.

Those things being said, I thought a deep dive into the technical side of HDMA3 and DRM (Digital Radio Mondial) would be interesting. I did an article comparing MA3 and DRM a while ago: All Digital Medium Wave Transmission

What challenges are there to transmitting digital radio on MW? First, there is the very limited bandwidth of the channel itself. In North and South America, AM channels are spaced every 10 KHz (9 kHz in other places). On Medium Wave, the analog channel is +/- the carrier spacing, e.g. 20 KHz (or 18 KHz) with half of that channel potentially interfering with the adjacent channels. On a 20 kHz channel, this limits data transmission rates to 72 kbps or less with DRM and 40 kbps or less with HDMA3.

Secondly, skywave propagation is a potential difficulty for all digital broadcasts. Ionospheric changes can create multipath and fading, especially as the sun rises and sets causing the D layer to form or dissipate. Changes in the E and F layers can make or completely break skywave reception. Ground wave reception is reliable out to the limits of the noise floor, and varies based on transmitter frequency, power, and ground conductivity, and electrical noise in the area.

Everything that can potentially mitigate noise and skywave reception problems is a trade-off between robustness and data throughput.

Screenshot of an HF DRM exciter from RF Mondial showing a 10 KHz wide channel on HF.

Screen Shot of an HF DRM transmission showing mask, courtesy of DRM Consortium

This is a screenshot of an SDR showing an HF DRM transmission received from a distance:

Radio Romania International, 13,650 kHz 90 KW, 7,530 KM path

The receiver is not quite on bearing for this broadcast, however, it seems to be doing well. This is Radio Romania International’s Spanish broadcast targeting South America. The Pan Adaptor shows the signal is 10.2 kHz wide, but that doesn’t mean much from a $30.00 RTL SRD. The waterfall display below shows it is spectrally dense compared to the analog signals to the left and right. Note that with DRM there is no analog carrier being sent. Instead, a series of pilot tones are attached to various OFDM subcarriers for the receiver to lock onto.

A short Primer on COFDM

The modulation method for both systems is Coded Orthogonal Frequency Division Multiplexing (COFDM), which is the same system used by mobile phones, cable systems, WiFi (802.11), ATSC 3.0 TV, etc. COFDM consists of a group of subcarriers multiplexed onto one channel. The number of subcarriers and the subcarrier spacing relates directly to the data throughput and the robustness of the signal. OFDM is a very robust method that works well in the upper VHF, UHF, and SHF bands. It can work well in lower frequencies, however, there can be issues with multipath and Doppler effect. The coded part consists of forward error correction, which may include interleaving and subtracts from the data throughput.

The ability of an OFDM signal to reject electrical impulse noise, and deal with potential fading or multipath interference is based on a few things. The cyclic prefix sets the Guard Interval for the OFDM frame. The length of the Guard Interval should be the same as the multipath delay which helps mitigate inter-symbol interference and inter-subcarrier interference. Since the Medium Wave channels are fairly narrow, the number of OFDM carriers and spacing between carriers have a great effect on robustness. The fewer carriers the more robust the signal. This comes at the expense of data throughput; the fewer carriers the less data can be sent.

Raised Cosine impulses, similar to Orthogonal frequency-division multiplexing. (2023, May 10). In Wikipedia. https://en.wikipedia.org/wiki/Orthogonal_frequency-division_multiplexing

A short Primer on QAM

Each individual OFDM subcarrier is modulated with a Quadrature amplitude modulation (QAM) signal. The advantage of this is that each individual carrier sends data at a relatively slow rate and the aggregate data rate is the sum of all the subcarriers. QAM uses two carriers 90 degrees out of phase. The amplitude of each carrier determines the resultant vector of the modulated wave to create a data bit. For example; the sum of the carriers equals +45 degrees at 25% amplitude a 1101 data bit is sent.

16-QAM Constellation diagram. (2022, December 17). In Wikipedia. https://en.wikipedia.org/wiki/Constellation_diagram

Both HDMA3 and DRM can use 16-QAM or 64-QAM. The larger the QAM constellation the more data can be sent. Smaller QAM constellations are more robust. HDMA3 can also transmit QPSK, which is Quadrature Phase Shift Keying. The resultant waveform from QPSK is identical to 4-QAM.

Bringing it all together

Radio Romania International, 11,975 KHz 90 KW 7,530 KM path, English service to Western Europe and North America,

A DRM-modulated HF and MF transmitter uses both sidebands to transmit unique information. There is no carrier present but rather a few pilot frequencies for the receiver to lock onto.

WFAS White Plains, NY All digital HDMA-3 signal

I like the waterfall display available with many SDR software programs. It gives a good indication of modulation density. With WFAS HDMA-3, the area +/- 5 KHz of the carrier signal has more power than the areas that are +/- 5 to 10 KHz from the carrier.

An HDMA3-modulated MW carrier sends the same data on upper and lower sidebands, effectively halving the data rate of DRM. There is a full carrier present, which represents approximately 25% of the transmitted power and does not contain any data. Currently, there are four three HDMA-3 stations transmitting in the US.

Both systems can make pre-corrections to the modulated signal in the exciter to compensate for amplifier non-linearities. This can greatly improve the MER and SNR.

The other perceived technical issue with AM radio is sound quality. This has to do mostly with poor-quality receivers, although there are some AM stations that are transmitting reduced-quality audio as well. There is a false notion that anything “digital” sounds better than analog. I would posit; it depends on several factors. Low-bit-rate audio codecs can sound abysmal. That being said, the newer high-efficiency audio codecs can sound quite good, but there are limits. With HD Radio, there is only one codec available; HDC+SBR. With DRM there are several; xHE-AAC, HE-AAC. xHE-AAC is designed to work with voice and can use bit rates as low as 12 kbps. It is possible for a robustly transmitted low-bit-rate codec to sound good with voice. It can sound okay with music, but not as good as analog FM.

Conclusion

Can an all-digital modulation format work well on the Standard Broadcast Band? The answer is; it’s complicated. One of the big positives of AM is that it is a very simple and well-tested system. Adding many layers of encoding and decoding is a violation of the KISS principle. That being said, using a digital modulation method that has been refined for mobile use over the years is a step in the right direction. There still is an issue with digital receivers; both HD and DRM. From what I have read, both formats are currently being included in several radio chip sets, yet I do not find those options in most car radios. There is a lack of public awareness, at least in the United States about digital radio in general. When someone says digital, most people think of streaming. When I am driving a rental car, I seldom find HD Radio, I do find Sirius/XM and all types of internet connectivity via smartphone apps.