The Rhode and Schwarz THR9 transmitter

Part II of II

This thing is on the air! There are still some tidying-up things to finish, but it is up and running and sounds great! Here are some pictures of various stages of the installation work:

Making harmonic measurements

The filing cabinets hold manuals and spare parts. There is not a lot of room left in this building, so workspace is at a premium. The filing cabinet on the left needs some Windex and elbow grease.

Main disconnect and conduit to 400-volt transformer
Outdoor coolant run
3/0 cables, 240-volt input to Hammond HPS Sentinal K transformer

The transformer does not have a neutral reference to the power company. The neutral for the transmitter is derived from the Y output connection. The transformer is also designed to suppress harmonics from non-linear loads like switching power supplies.

Wiring in Square D I line panel
Square D I-line panel rated for 600 volts
#2 SOOW cable feeding upper and lower sections of transmitter
Wiring to disconnect switch on transmitter
Pump station during system fill
Heat exchanger

The wiring on the pump station and heat exchanger needs a little more work. The client wanted to get this on the air as soon as possible because they are in a book and were running at 50% power. Once things calm down a bit, I will put the backup transmitter on for an afternoon and properly dress the wires.

FM modulation analysis

I found this FM modulation analysis function on my spectrum analyzer very useful. The station deviates slightly more than the allocated 75 KHz because of a subcarrier. Overall, it looks good. I measured the harmonics out to the 10th harmonic, most of them were in the noise floor. A few made a slight appearance, but well within FCC tolerances. It is important to document this, as this site has colocated cellular carriers and several E911 services.

FCC part 73.317 states:

(d) Any emission appearing on a frequency removed from the carrier by more than 600 kHz must be attenuated at least 43 + 10 Log10 (Power, in watts) dB below the level of the unmodulated carrier, or 80 dB, whichever is the lesser attenuation.

47CFR 73.317
WHUD fundamental
WHUD fundamental with two Mini-Circuits NHP-200 high pass filters installed

The rest of the harmonics were measured down to -130 dB with the two NHP-200 high-pass filters in the circuit. The 3rd, 4th, 5th, 6th, and 8th harmonics were unmeasurable. The 8th, 9th, and 10th made slight appearances.

WHUD 6th Harmonic, noise floor
WHUD 8th harmonic makes a little appearance
Main antenna VSWR
Antenna VSWR according to the transmitter directional coupler

Pretty close, the VNA was inserted at a patch panel, which is the last thing before the transmission line leaves the building. The transmitter goes through an ERI switchless combiner, which probably gives it a slightly better load.

Backup antenna SWR

Aside from the finishing details, I need to keep an eye on this for a week or so and top off the Heat Transfer Fluid as needed. It takes a bit of time to get all of the air out of the coolant loop. Another thing; the operating pressure on this is 4 Bar, which is almost 60 PSI. That is higher than other liquid-cooled transmitter systems I have installed before.

The Rhode Schwarz THR9 transmitter

This is part I of II.

We are in the process of installing an R&S 40 KW liquid-cooled FM transmitter. My first comment; these are well-built units. A quick look at the machining of the parts indicates attention to detail is a key design feature.

As the price of electricity continues to rise, liquid-cooled transmitters for this power level make a lot of sense.

Rhode Schwarz THR9 VHF transmitter

This installation is for Pamal Broadcasting’s WHUD, Peekskill, New York. The site has undergone major upgrades in the last few years. The original 1958 World Tower Utility 80 was replaced a year ago with this Valmont 60X394. Two cell carriers, two translators, and several E911 services are now colocated on the tower.

Valmont 60X394 tower, WHUD Peekskill, NY

The transmitter building is also the original cinder block structure from 1958. When it signed on, the station had a Gates FM5B 5 KW transmitter, an RCA BFA-7, 7-bay horizontally polarized antenna with an ERP of 20 KW. In 1970, that antenna was changed out to a 6-bay circularly polarized ERI with a Harris FM20H transmitter, increasing the ERP to 50 KW. As of now, the station has a 4-bay ERI SHP-4-A-C main antenna and the TPO is 28 KW for the same 50 KW ERP. As the station’s power increased, the building became a little bit smaller than optimal. We needed to rearrange some equipment to gain space for the pump station and step-up transformer.

Pump Station
Heat Exchanger

Rhode Schwarz recommended installing a step-up transformer for the incoming AC mains. The power supplies run most efficiently with 400 volts AC.

Hammond HPS Sentinel K dry core transformer
The Rhode Schwarz RF connection to an ERI switchless combiner

We decided to reuse the ERI switchless combiner left over from the Nautel V-40 installation. There are two Nautel V-10 transmitters with a hybrid combiner that are to be used as a backup. We won’t be running this as a combined transmitter operation, it is a way to save money rather than install a separate 3-inch coax switch. I will build a simple control panel to move the combiner position either all the way up (THR9) or all the way down (V-10s).

2.5 inch core drilled holes for coolant supply and return

Working on the liquid cooling system. I used a core drill to make the supply and return lines to the outdoor heat exchanger. I made sure that I had the shop vac (with a HEPA filter) running while drilling so that all of the concrete dust was captured. That stuff can get everywhere and has a bad tendency to destroy motor bearings. Whatever plant made these blocks in 1958, they used some hard material. It took a while for my masonry drill to get through them.

There is a place on Earth called Meddybemps

I might not know that if I hadn’t been there installing a TV transmitter. We installed this GatesAir VAXTE-2 for Maine Public Broadcasting’s WMED-DT.

GatesAir VAXTE-2, WMED-DT Meddybemps, Maine
Dielectric 8 pole channel mask filter
WMED transmitter site

After the old Harris Platnum transmitter was turned off, the client got a call from the cable company across the border in New Brunswick. Apparently, they take the off-air signal for their cable feed of PBS in New Brunswick.

We also installed a VAXTE-6 at Mars Hill for WMEM-DT.

GatesAir VAXTE-6, WMEM-DT, Mars Hill, Maine
WMEM-DT test load and coax switch
WMEM Transmitter site, Mars Hill, Maine

I was reading through the SBE 2023 salary survey and noticed that those engineers who work in Radio and TV make more money than those who do just radio. My experience is that TV is more technically challenging because there are many more building blocks that go into the end product. ATSC has several layers of complexity starting with video and audio codecs. Then there are various transport methods, PSIP (Program information) tables, aspect ratios, degrees of definition, video and audio bit rate considerations, and muxing, which occur before the Transport Stream gets to the exciter.

DTV ATSC 1 modulation analysis; 8VSB eye pattern

One thing I will note, TV is acronym-heavy. There are many combinations of letters and abbreviations. I can work on a list of things that I have learned, but one of the most important measurements for the quality of the over-the-air signal is MER, which stands for Modulation Error Ratio. MER is measured in decibels and low MER usually indicates some distortion problem.

WMEM S21 mask filter sweep

Once the program material hits the exciter, the process is similar but there are a few noted differences. TV transmissions are 6 MHz wide vs. 200 KHz for standard FM. In order to minimize distortion, the signal needs to be precorrected by the exciter for linearity. HD Radio does the same thing to a degree. High-band VHF and UHF stations tend to use slot antennas. These are high-gain broad-banded systems that are generally very simple. The FCC stipulates that spectrum mask filters be used to limit out-of-channel emissions. During the installation process, the filters must be measured and proofed to comply. In addition, the harmonics need to be measured down to -120 dBm because most of them fall in the wireless data and mobile phone spectrum and we know how those folks can be.

Like other segments of the broadcast engineering profession; TV is struggling to find competent technical staff, so if you are willing to learn new things, consider doing some work in television.

Mars Hill also has many of these giant things:

Wind Turbine, Mars Hill, Maine

I’ve never seen one up close, and I will say they do make a fair bit of noise when it is windy. I also noticed that air density makes a difference in the noise levels. When it is cooler or more humid, the noise level goes up. There are twenty-eight 1.5 MW GE wind turbines that generate enough electricity to power 18,000 average homes annually. Maine has several wind turbine farms in various parts of the state. I believe Mars Hill was the first, completed in 2006.

Cellular work on a skirted tower

Cell carriers generally do not like working on AM towers. It is out of their comfort zone and adds a layer of complexity to the project. However, sometimes they don’t have a choice, mainly when there is an existing site and they need to make changes. We have also had mixed results with tower contractors employed by various cell carriers. In one incident, a contractor showed up and re-tensioned the guy wires breaking all of the porcelain insulators. Another time, a contractor showed up to install footings 10 feet away from the tower and ripped up all the ground wires. One tower climber found one of the skirt wires was in his way, so he cut it off with a hack saw.

Those experiences demonstrate that it is far less expensive to have somebody on site while tower contractors are doing installation work on any skirted AM tower. And so it was today.

AT&T 5G sector assembled waiting for lift

This tower has two AM stations diplexed as well as two FM translators combined into one Nicomm antenna. We did before measurements on the AM stations using an OIB-3. Once the installation is done, we will do the after-measurements and then assist the licensee with any FCC 302 filings if the base impedance has changed significantly.

WENU, WMML W250CC and W245DA tower
Lifting the North Sector

With each lift, I went out to the base of the tower and made sure that the skirt wires were clear of the mounting brackets and not touching anything else. The tower crew was Russian speakers. When they asked if the transmitter was still on, which was kind of comical (he motioned to the skirt wire, made like he was grabbing it, then jerked around like he was being electrocuted). I had to wrack my brain to try and remember: Передатчик выключен. The literal translation is “Not working.” The difference between “working” and “not working” is one consonant at the beginning of the second word which is pronounced soft for off and hard for on.

This site was the subject of a previous post: A tale of five signals.