Filters for Over The Air Television

Many people are surprised that OTA TV (Over The Air Television) is still a thing. I am here to say that there are lots of TV stations still broadcasting. OTA is alive and well, especially around big cities. To wit; I noticed this older TV antenna on the roof of a transmitter building in Lodi, NJ. Being curious, I connected an ATSC 1.0 TV to the antenna lead in the kitchen. One scan captured 62 TV channels and sub-channels OTA in the NYC market.

Somewhat aged TV/FM antenna pointed at Manhattan

That site is 10 miles northwest of the Empire State Building.

I also noted that the satellite dishes on site have had Terrestrial Interference (TI) filters on the LNB’s for many years. Recently, 5G filters were installed as well. Thus, I added a 5G/LTE filter made by Channel Master (part number CM-3201) to the TV antenna splitter. A rescan captured 79 channels. Interesting.

I began ordering TV receiver filters and testing them with my network analyzer. There are many different units made by different manufacturers. The smaller, cheaper units do not have as good performance as the larger, more expensive ones. Go figure.

Here are a few sweeps of various filters:

Channel Master CM-3201 5G/LTE filter. Cut off 608 MHz
Silicon Dust USA LTE LPF-608M. Cut off 608 MHz
Phillips LTE-5G. Cut off 616 MHz

There is also an FM band-stop (Channel Master CM-3202), which is effective for blocking out 87 to 113 MHz.

Channel Master CM-3202 FM band-stop

Sometimes I get questions from non-technical readers, thus for the uninitiated; these sweeps are return loss. The higher the line on the right-hand graph, the less signal will get through the filter. A flat line at 0dB means that little or no signal is getting through on those frequencies.

These filters are helpful, especially with inexpensive consumer-grade TV receivers. If you live near an FM transmitter site, then an FM band-stop filter may help, especially with the low and high-band VHF stations. If you live anywhere near a cell site (and most of us do) then a 5G/LTE filter will likely help.

Happy cord cutting!

Doing it with sound AND pictures

AKA: Television!

I am talking about the type of TV you need an antenna for. I have been installing a few of these low power digital TV transmitters at various places and it is good work.

Anywave MPTV 2.2 KW digital TV transmitter, WCRN Boston
Anywave MPTV 2.2 KW digital TV transmitter, WCRN Boston
LPTV antenna side mounted on tower in Quincy, MA  ERP is 15 KW.
LPTV antenna side mounted on tower in Quincy, MA ERP is 15 KW.

Anywave MPTV unpacking, rolling into building, Ellenville, NY

This transmitter’s dry weight is about 500 pounds, which was a little bit too much for our appliance hand truck, so we built a ramp. They have a nice set of wheels on the bottom, so they roll into place.

Carrier power after pre-correction files updated

There are a few differences in the way things are done. First of all, there is a different set of acronyms:

  • ASI- Asynchronous Serial Interface, format for MPEG transport stream, max speed 270 Mbps.
  • SDI – Serial Digital Interface – Similar to ASI but can run much faster, up to 12 Gbps.
  • TS – Transport Stream, Encoded video and audio streams into the exciter. Same idea as composite audio input on an FM exciter.
  • TSID – Transport Stream ID, a unique number assigned to each DTV station and encoded with the transport stream.
  • PSIP – Program System Information Protocol, carries program and system data about the transport stream.
  • ATSC 3.0 – recently updated ATSC standard that allows TV stations to do more with their transport streams than before. Will also change the modulation from 8VSB to COFDM.

Then, some things that look familiar are called by difference names, BNC cable vs ASI cable… I am a neophyte to the TV world, so there still many things to learn.

EAS is still EAS, but now there is locally generated video to go along with the audio.

A while back, some fool wrote their congressman because THE COMMERCIALS ON THE TEE-VEE WERE TOO LOUD, so there is something called CALM Act compliance.

However, at the output connector on the exciter, through the amplifier, filters, directional coupler, etc; it is RF and behaves like RF. Even more interesting; Mr. Doherty’s name is used to describe the RF amp. Doherty amplifier or Doherty modulation was designed by William Doherty for Western Electric in 1936. It was not until Continental Electronics began using it in there AM (317B) and Shortwave (420A) transmitters that it became known broadly. Old things are new again:

Continental Electronics 420A 500 KW Shortwave transmitter, Greenville site B

That picture is from my visit to Greenville, NC in 2017. This is the control console, the transmitter is behind the glass and takes up half the building. It was installed when the site was built in the early 1960’s. The new Doherty UHF amplifiers use LDMOS devices, notably the BLF888E in the Anywave units.

Antenna sweep, channel 30 UHF slot antenna, WCRN Boston
Antenna with channel band pass filter, Channel 30 WCRN Boston

The Channel Band Pass Filter is required by the FCC, basically it ensures that the TV transmitter is staying in it’s allotted 6 MHz channel. They add phase rotation, as noted above. This is why pre-correction is needed to keep the ATSC signal linear across the entire 6 MHz bandwidth. RF is RF and we like RF.