All Digital AM?

I have been reading, with interest, the saga of HD Radio on the AM (AKA Medium Wave) band. First question; if it goes all digital, will we still call it AM? Of course, there are other questions and concerns:

  • The proprietary nature of HD Radio, AKA MA3 or NRSC-5D as they are now calling it, is problematic. Xperi, the latest patent owner, currently (their word) has agreed to waive licensing fees for AM station owners who install their system. Is this a limited-time deal for early adopters or in perpetuity for all stations?
  • The NRSC-5D tests on WWFD, Fredrick, Maryland are hopeful, but as I pointed out before, it is one station with a well-functioning antenna system. Many AM antenna systems are defective either in design or due to deterioration. Is the FCC going to start policing the AM band again to cure these self-inflicted wounds?
  • Of course, the NAB wants zero oversight on the entire adventure. Under their proposal, small ownership AM stations would have a difficult time remediating interference issues from all digital co-channel stations by eliminating any required notification period, as proposed by the SBE.
  • The NAB also wants to nix a 1 Hz carrier frequency requirement, which would help with both the analog and digital interference issue, saying it would be too expensive. I disagree. In this day of universal GPS timekeeping, it would be easy to implement this on all modern transmitters, especially if they were already installing an HD Radio exciter.
  • Denis Jackson’s Radio World Article states that reliable coverage can be had out to 0.1 mV/m. This seems very, very optimistic given that ambient electrical noise (non-broadcast related) on the AM band is at very high levels and still climbing. Further, once the all-digital conversion starts, more and more co-channel digital interference will happen, likely cutting down that contour to a great extent. It works now but may not work later. These types of statements seem naive or perhaps disingenuous. Again, WWFD is one digital signal in a vast ocean of analog carriers.

While I am skeptical of some of the statements made in various articles and comments before the FCC, I do believe that converting the Medium Frequency band to all digital will have benefits. The BBC DRM tests carried out in 2007 (The Plymouth DRM long term trial) show that digital on MF can work. DRM has been implemented in various countries with good results.

Getting rid of the hybrid IBOC/Analog is a step in the right direction.

My concerns are the small owners who are still making a go of it on AM. Those guys still doing community radio and serving the public interest. If they choose to wait, are they going to get buried under a digital dog pile and then have to pay the full license fee later? Something like that might be the end for them.

HD Radio in and of itself is not the panacea for the AM band. Other things have to happen to make it work right. The SBE speaks extensively about ambient noise on the MF band. They are entirely correct. In addition, there are many, many AM stations that do not have compliant antenna systems. There are stations operating a DA-2 system full-time on the night pattern. There are stations operating a DA-2 full-time on the daytime pattern and power. There are stations that are supposed to turn off at night, which stay on 24/7. There are stations not reducing power to nighttime levels. The list goes on. Simply putting digital carriers on everything will not reduce station-to-station interference, especially at night.

I am cautiously hopeful that the FCC will look into the ambient noise problem, which simply cannot be over-emphasized. They would also need to re-invigorating the Enforcement Bureau. Since they closed down most of their field offices, it has been kind of a free-for-all out here.

Speaking of Radio…

I was talking to a friend from Russia about history, my job, and various other things that are going on in my life. I received this reply, which I thought was interesting on a number of levels:

I’m glad we are on the same page about the era of the ‘cold war’. We were interested in your life even more than you in ours. We had almost no sources of information except for ‘The morning star’ which is a newspaper of the Communist party of Great Britain. The Voice of America and the Liberty (or Freedom, I have no clue because for us it was ‘RADIO SVOBODA’) were extremely hard to tune on. All foreign broadcasts were jammed. So to listen to the station you should maximize the volume up to the limit which was dangerous. Soviet houses are not at all soundproof and your neighbors could easily rat on you. Since that time I’d been dreaming of a small radio with could receive a clear signal from abroad. Of course we have the Internet broadcasting now but they often use old recording instead of live air and the signal depends on your data carrier. You should be online, you should have an app and unlimited data on your contract, your phone should be charged all the time. Too many conditions. Unfortunately a lot of foreign sites are banned here and the trend is to make this number bigger and bigger.

I find that perspective interesting.  We take for granted our ability to listen to information and listen to different points of view, even those we don’t agree with.  There are still trouble spots in the world and some people are not as fortunate.  It is very easy to block internet traffic and there are several countries that currently block access to some or all of the internet, for the safety of their citizens, no doubt.  Ideas are dangerous.

VOA/RFE transmitter site, Biblis Germany
VOA/RFE transmitter site, Biblis Germany. Photographer: Armin Kübelbeck, CC-BY-SA, Wikimedia Commons

In the last ten to fifteen years, many large government shortwave broadcasters have reduced or eliminated their programming favoring an internet distribution model.  This is a mistake.  It is very difficult to successfully jam terrestrial radio broadcasts.  Shortwave Facilities are expensive to develop and maintain, there is no doubt about that.  However, as the Chief Engineer from Radio Australia (ABC) once told me “HF will get through when nothing else will.”  Ironically, ABC has eliminated its HF service on January 31, 2017.

It seems to me that a sort of “Shortwave Lite” version of broadcasting might be the answer.  Use more efficient transmitters with lower power levels closer in to the target areas.  Such transmitters could be coupled to rotatable log periodic antennas to target several listening areas with one system, thus greatly reducing the number of towers and land required.  Solid-state transmitters with a power of 10-50 KW are much, much more efficient than their tube-type brethren.

DRM30 (Digital Radio Mondiale) has not gained widespread use in the MF and HF bands.  Like its HD Radio counterpart, the lack of receivers seems to be one of the adoption issues.  As of 2017, there are only four DRM30-capable receivers for sale not counting software plug-ins for various SDRs.  That is a shame because my experience with DRM30 reception has been pretty good.  I have used a WinRadio G303i with DRM plug-in, which set me back $40.00 for the license key (hint for those nice folks at the DRM consortium; licensing fees tend to quash widespread interest and adoption).

CFRX, Toronto coverage map, average HF propagation conditions
CFRX, Toronto coverage map, average HF propagation conditions

Finally, I have advocated before and still advocate for some type of domestic shortwave service.  Right now, I am listening to CFRX Toronto on 6070 KHz.  That station has a transmitter power output of 1 KW into a 117-degree tower (approximately 50 feet tall) using a modified Armstrong X1000B AM transmitter netting a 15-32 µV received signal strength some 300 miles away.  That is a listenable signal, especially if there is no other source of information available.  The average approximate coverage area for that station is 280,000 square miles (725,000 square kilometers). That is a fairly low overhead operation for a fairly large coverage area.  Perhaps existing licensed shortwave broadcasters should be allowed to operate such facilities in domestic service.

The point is before we pull the plug on the last shortwave transmitter, we should carefully consider what we are giving up.

Brother, can you spare a theorem?

A theorem is not, indeed, a fact.  It is rather, an idea which is deduced and supported by other proven facts.  Thus, a theorem is generally believed a truth.  It should be of interest to the “All Digital” AM (AKA Medium Wave) proponents that noise on the digital channel will reduce data throughput as a function of channel bandwidth and Signal to Noise Ratio.  This is known as the Shannon-Hartley theorem:

 C =  B \log_2 \left( 1+\frac{S}{N} \right)

Where:
C is the channel capacity in bits per second;
B is the bandwidth of the channel in hertz (passband bandwidth in case of a modulated signal);
S is the average received signal power over the bandwidth (in case of a modulated signal, often denoted C, i.e. modulated carrier), measured in watts (or volts squared);
N is the average noise or interference power over the bandwidth, measured in watts (or volts squared); and
S/N is the signal-to-noise ratio (SNR) or the carrier-to-noise ratio (CNR) of the communication signal to the Gaussian noise interference expressed as a linear power ratio (not as logarithmic decibels).

With this equation, one can discern a fundamental flaw in the all digital logic.  One of the main issues with AM Medium Wave broadcasting is the ever increasing noise floor.  Our society has changed drastically in the last one hundred years or so since AM was invented.  Electrical noise generators; computers, plasma screen monitors, mobile phones, appliances, energy efficient lighting, data over power line, street lights, poor utility line maintenance, even electric cars, it seems, generate a cacophony of noise in the Medium Wave frequency band. A digital modulation scheme, be it HD Radio or DRM, will mask the noise to a certain extent, that is true.  However, once the SNR exceeds the ability of the receiver to decode the necessary bits, the receiver will mute.  While it is true, the listener will not hear noise, they may not hear anything at all.

I will also note; none of the current “AM improvement” schemes under consideration by the FCC addresses the noise issue on the AM band.  Without addressing the noise issue, any digital modulation scheme will be a temporary fix at the very best.  The noise floor will continue to rise and after it gets high enough, the all digital modulation will simply not work.

It will be interesting to see the data from the all digital HD Radio testing that is being done in various locations.  That is, if the NAB, et al. does not decide to treat that data like some kind of state secret; they have become reticent of late.  When somebody acts like they have something to hide, it makes me think they have something to hide…

AM Stereo Renaissance?

At least in some quarters, there appears to be interest in reviving AM Stereo.  Perhaps as an unintended consequence of AM HD Radio, it seems.  Some people have discovered, quite accidentally, that some AM HD Radios will detect the presence of AM stereo pilot and open up with IF bandwidth automatically, making the analog signal sound much better. AM Stereo being received on an AM HD Radio receiver:

That particular brand of AM HD Receiver only allows 5 KHz audio, which still sounds much better than the typical 2.5 to 3 KHz.

A short video comparing AM HD Radio and AM C-QUAM:

As IBOC and C-QUAM are incompatible, it is an either/or situation.  Being that C-QUAM is open source and many new solid state transmitters come with AM stereo cards installed, the financial leap from AM mono to AM stereo is not nearly as steep as it would be to install AM HD Radio.  The other nifty thing;  C-QUAM is it is completely backwards compatible with existing AM mono receivers, the all digital version of IBOC is not.

It bears repeating; AM is not inherently inferior to FM sound.  Wide band AM can sound really, really good.   Something that we seemed to have forgotten over the years of listening to crappy receivers.  This has caught the attention of Tom King, owner of Kintronics, who penned the following letter to the FCC and all AM broadcasters:

Subject: Meeting with FCC Commissioner Ajit Pai and Mr. Peter Doyle,
Chief of the Audio Division of the FCC Media Bureau
at the offices of the FCC in Washington, DC on Tuesday, September 23, 2014.

To All AM Broadcasters in the USA:

Kintronic Labs is concerned about the declining position of the AM radio service in the United States, which we reflected in our Reply Comments to the FCC NPRM Docket No. 13-249 on the subject of “AM Revitalization,” issued on October 31, 2013. In the interest of preserving this great national resource for local public media, we have scheduled a meeting with FCC Commissioner Ajit Pai and Audio Media Chief, Mr. Peter Doyle, to address what we believe are the critical steps toward putting AM radio on a more competitive basis with FM as follows:

(1) FCC enforcement of regulations relative to the power distribution industry and the consumer electronics industry that are not currently being enforced, resulting in a constantly worsening electromagnetic environment for AM radio service.

(2) The need for parity between AM and FM receivers through the establishment of minimum technical standards for AM receivers that would become effective as soon as January 2016. We plan to demonstrate a comparison of full-bandwidth C-QuAM AM stereo reception with a local FM station and with a typical AM receiver in a popular consumer multi-band receiver. The effects of adjusting the AM bandwidth from 2.5 to 10 kHz in 2.5-kHz steps will also be demonstrated.

(3) The need for FCC authorization of AM synchronous boosters. Unlike FM translators, such on-channel boosters would serve to increase the AM stations’ audiences while concurrently maintaining the future viability of the band. The related technique of wide-area AM synchronization for coverage improvement will also be addressed.

Referring to Step #2, it is absolutely essential that very close to full parity be established for new AM radio receivers versus their FM radio counterparts. This includes all key AM receiver performance attributes, including:

Low internal noise floor, well below the average AM-band atmospheric noise level. This includes all internal synthesizer and DSP circuitry within the receiver (and in the immediate environment for integrated automotive applications).
High overall RF sensitivity, selectivity, and dynamic range, to provide adequate amplification of weak signals, even in the presence of significant adjacent- and/or alternate-channel signals, especially in strong-signal environments. This would incorporate typical advanced, multi-stage AGC action, with appropriate interaction between the RF and IF AGC control mechanisms to maximize overall receiver dynamic range, including adaptive front-end attenuation for signal-overload protection in very strong-signal areas. Useful typical specs include: sensitivity – 1 mV for 10-dB SNR; selectivity (adjacent-channel) – 25-50 dB (adaptive).
Highly effective noise (EMI) rejection, including staged RF and IF noise blanking, accompanied by appropriate audio blanking and/or expansion when required. Such features were developed and included in Motorola chip sets in the 1990’s in the AMAX program, and are easily integrated into modern, high-density AM/FM receiver chips.
Full 10-kHz audio bandwidth capability with low detector distortion. This would obviously incorporate dynamic, signal-controlled bandwidth control (including AMAX-style adaptive 10-kHz notch filtering) as dictated by noise and adjacent-channel interference.
Stereo capability. If the receiver has FM stereo capability, it must have corresponding C-QuAM decoding for AM.

Without fulfillment of the first three requirements (this also includes the associated AM antennas both for vehicles and for home use), basic AM reception will suffer significantly compared with FM. Without the last two, the output sound quality cannot be closely competitive with FM (i.e., 10-kHz full bandwidth on AM versus 15-kHz nominal for FM).

We therefore petition the FCC to mandate the following minimum allowable performance specifications for all AM receivers that will be manufactured and installed in new automobiles as of January 1, 2016:

Audio Bandwidth: 10 kHz typical, adaptive, with a minimum nominal bandwidth of 7.5 kHz
Signal-to-Noise Ratio: minimum 55 dB, preferably 60 dB
Sensitivity: -120 dBm for a signal-to-noise ratio (SNR) of 10 dB
Selectivity: 25-50 dB (adaptive filtering, using co-, adjacent-, and alternate-channel detection)
Dynamic Range: 100 dB
Noise Figure: 1 – 3 dB
Image Rejection: -50 dB
Intermod: IP2 , IP3 intercepts +10 to +40 dBm
IF: low with image-rejecting down-conversion, or double-conversion
Stereo Separation: minimum 25 dB

Respectfully Submitted,
Tom F. King
President

All of those technical specifications are doable with modifications to the current receiver chipset.  Currently there are very few if any AM Stereo receivers being manufactured.  One might ask, how can a typical AM mono receiver be modified to receive AM Stereo.  A great question.  For a small sum, an outboard circuit board can be purchased and installed in a typical AM mono receiver.  For most non-car radios, this modification would be fairly easy.  Car radios, on the other hand, will be very difficult to modify since most new radios will be bricked if tampered with (thanks a lot, crackhead radio thieves of New York).

And for those interested, there are also lists of radio stations broadcasting in AM stereo:

According to the Wikipedia source, there are 90 some odd station using C-QUAM AM stereo.  Using iBquity math, that is nearly the same number as are broadcasting AM HD Radio.

If you are an AM station owner, you can start by transmitting good programming.