DOCSIS 3 Cable Modems

The internet is relied upon for many different functions. One thing that I see more of is STL via the public network. There are many ways to accomplish this using Comrex Bric links, Barix units, or simply a streaming computer.

We often can take for granted the infrastructure that keeps our connection to the public network running. Cable modems are very common as either primary or backup devices at transmitter sites, homes, offices, etc. The basic cable modem uses some type of DOCSIS (Data Over Cable Service Interface Specification) modulation scheme. This system breaks up the bandwidth on the coaxial cable into 6 MHz channels for downstream and upstream transmission. Generally, downstream transmission is 16 channels of 256-QAM signals. Upstream is 4 channels of QPSK or up to 64-QAM signals. Depending on your traffic shaping plan with the cable company, this will allow up to 608 Mbps down and 108 Mbps up. Those speeds also can change due to network congestion, which is the bane of coaxial cable-based internet service.

The internet should now be considered a public utility. Especially after the COVID-19 emergency, distance learning, telecommuting at all the other changes we are experiencing. I know in the past, ISPs were reluctant to accept that role, as there are many responsibilities. That being said, when the public network goes down, many things grind to a halt.

Sometimes the problem is at the cable office or further upstream. Loss of a backbone switch, trunk fiber, or DOCSIS equipment will cause widespread outages which are beyond anything a field engineer can deal with.

Then there are the times when it is still working, but not working right. In that situation, there are several possible issues that could be creating a problem. A little information can go a long way to returning to normal operation. One thing that can be done with most newer cable modems, log into the modem itself and look at the signal strength on the downstream channels. Again, most cable modems will use 192.168.100.1 as their management IP address. The username and password should be on the bottom of the modem. I also Googled my modem manufacturer and model number and found mine that way.

Navigate around until you find a screen that looks like this:

DOCSIS 3.0 Downstream Channel Statistics

There is a lot of helpful information to look at. The first thing is the Pwr (dBmV) level. DOCSIS 3 modems are looking for -7 dBmV to +7 dBmV as the recommended signal level. They can deal with -8 to -10 dBmV / +8 to +10 dBmV as acceptable. -11 to -15 dBmV / +11 to + 15 dBmV is maximum and greater than -15/+15 dBmV is out of tolerance.

The next column to look at is the SNR (Signal to Noise Ratio). DOCSIS 3 needs to be greater than 30 dB and preferably 33 dB or greater.

The last two columns are the codeword errors. This is a Forward Error Correction (FEC) system that verifies the received data and attempts to correct any corrupted bits. The lower the codeword error number, the better the data throughput. Codeword errors are often due to RF impairments and can be a strong indicator of cable or connector issues. Another possible cause is improper signal strength, which can be either too high or too low.

Upstream data is transmitted on 4 channels.

DOSSIS 3.0 Upstream Channels

The only statistic that is useful on the upstream channels is the Pwr, which should be between 40 and 50 dBmV.

I have found a few simple parts and tools that can sometimes restore a faltering cable connection. First, I have several attenuator pads; 3dB, 6dB and 10 dB with type F connectors. This has actually cured an issue where the downstream signal was too hot causing codeword errors. Next, some good Ideal weatherproof crimp-on F connectors for RG-6 coax and a good tool should also be in the tool kit. I have had to replace mouse-chewed RG-6 from the outside cable drop into the transmitter building. Fortunately, there was some spare RG-6 in the transmitter room.

If these attempts do not fix the issue, then of course, be prepared to waste a day waiting for the cable company to show up.

Hello, Radiodiscussions.com

I was pleasantly surprised to learn that after a two-month sabbatical, Radiodiscussions.com has returned with an updated look and all of its archived posts intact.

Radiodiscussions.com screen shot
Radiodiscussions.com screenshot

I am pleased that the current owners had a change of heart.  Radiodiscussions.com was not perfect, however, it was a good place to gain insight, take part in conversations, read up on rumors and innuendo, follow the flame wars on various threads, etc.  In other words, observe radio people in their natural habitat.

CES 2014 and the Digital Radio question

I have been busy of late, however, still keeping abreast of the news of the day.  Along with that, CES 2014 wrapped up recently.  No huge developments, especially when it comes to Broadcasting.  However, there was one item of interest; the updated technical specifications of IEEE 802.11ac.

It is of interest here because of the implications of mobile/portable data developments and their impact on traditional AM and FM broadcasting. The new specification calls for 1.2 Gbp/s per device in the initial release, increasing that throughput to 6 Gbp/s in later releases.  These data rates are for overall transmission, including the WiFi overhead.  Actual usable application data (layers 5-7) would be about 20 to 30 percent less.  Even so, 900 Mbp/s is a phenomenal data rate.  Truly I say to you; this is the future of digital broadcasting.  HD Radio™; may well prove that the “HD” stood for “Huge Distraction.”

The new 802.11ac specification uses MU-MIMO, high-density modulation, larger channel bandwidths, and beamforming technology in the 5 GHz WiFi spectrum.  Of course, the question is, at what distances will this system work?  If it is like conventional WiFi, then 100-200 feet is about all that can be expected.  However, there are also many people interested in wireless broadband (WiMAX) service as an alternative to traditional wired ISPs. For that application, having many outdoor 802.11ac nodes connected by a backbone could potentially blanket a city or campus with free high-speed wireless data.

Example of cjdns network
Example of cjdns network

Along the same lines, there are many people involved in creating mesh networks of various types; be they ad-hoc mobile networks, darknets, bitclouds, etc. Mesh networking is a very interesting topic, for me at least.  The network protocols are getting better and more secure.  WiFi hardware is becoming less expensive and more reliable.  As more and more people put effort into developing protocols like cjdns, local mesh networks will become widespread unless they are outlawed.  You know; because of teh terrorism!!1!!

As it stands today, I can drive for two hours in mostly rural upstate NY and CT streaming my favorite radio programs and have nearly seamless handoffs and very few dropouts.  This is on my three-year-old, beat-up 3G HTC android phone sitting in the passenger seat of my car.

Digital Radio is here, it is simply not the In Band On Channel system that legacy broadcasters have chosen.

Goodbye, Radiodiscussions.com

The popular discussion board, which was started in the mid-1990s has been terminated by its current owners, Streamline Digital. It seems that the site was not making any money and thus the plug was pulled.

radiodiscussions

There are other engineering-type discussion boards such as The Virtual Engineer and… Hmm, Anybody?

Where a vacuum exists, nature abhors it.  The question is, will anyone step up and fill the void?