I have been watching and listening to the news from Ukraine. It is somewhat horrifying to see the wanton disregard for human life. It is especially concerning when combatants begin shelling a nuclear power plant. A breach of one of those reactor containment buildings might have contaminated a wide swath of eastern Europe. Such an act demonstrates that the Russians no longer seem to care about anyone, themselves included. A man can be very dangerous when he has nothing left to lose.

I have known many Russians over the years through email exchanges, video chats, and meeting in person. People seem to be celebrating with glee over the sanctions but it just makes me sad. Obviously, the war of aggression is wrong. However, you cannot conflate ordinary citizens with the terrible acts of their government, whether in Russia or anyplace else.

Roskomnadzor is has removed almost all outside sources of information from the Russian internet. As of this writing; CNN, BBC, Facebook, Twitter, Google (YouTube) have all been band. Radio Free Europe and Radio Liberty still exist, however, they are either on FM or use the internet for distribution.

Close up curtain array

I have to wonder if the VOA is going to step up with some shortwave broadcasts to the region. I know that the BBC as restored two frequencies so far. I believe that the European VOA relay sites have been shut down. That means either leasing time with someone or using Greenville. That is a long way away from eastern Europe, however, HF propagation is currently good and those old Continental 420As could use a little workout. Looks like they still have a row of curtain arrays aligned along 30-40 degrees true North.

Continental Electronics 420A 500 KW Shortwave transmitter

As the Chief Engineer of Radio Australia once said, HF will get through when nothing else will.

In the mean time, it might be a wise idea to dust off those old cold war contingency plans and review them. At appears a new iron curtain has arisen, stretching from St. Petersburg to Odessa.

Radio Guide; The Magazine

As some of you may have noticed, recently I have been writing some articles for Radio Guide. There are several good reasons for this, but the most important one is education. I believe that terrestrial radio will be around for a few more years. As others have noted, there are fewer and fewer broadcast engineers. Those that understand high power RF and all its intricacies are fewer still. It is important that a cadre of knowledgeable broadcast engineers carry on.

The internet is a great thing. However, it depends on cables of some type to exist. As we know, cables can be damaged. In addition to cables there are routers, core switches, servers and so on. All of that equipment can fail for various reasons. People have been working hard to improve the resiliency of the internet. That is a good cause, to be sure. However small it may be, there is still a chance that the internet can fail. Worse still, this can happen during some type of natural disaster or other emergency. Thus, during such an emergency, Radio can and will function as a vital information source provided that the station is on the air and has a program feed. That is also a good reason to keep the current RF STL paths in place as much as possible.

The Radio Guide articles are a great way to pass along some of that hard earned experience to others. I also want to put supplemental information here for those interested to download. Things like charts, forms, pictures, videos, etc.

What I am planning on is to list the articles here, then put links to any supplemental information provided below that sub heading.

Distributed Mode Loudspeakers

My journey into home stereo speakers and high quality audio continues…

This is not a broadcast related post, but I find this type of thing interesting nonetheless. A few years ago, I began fiddling around with flat panel speakers or Distributed Mode Loudspeakers (DML). My first attempt was lackluster, although adequate and not very expensive.

I enjoy listening to all types of music. I notice that some music reproduces better than others. Piano is a particularly difficult instrument to record and faithfully reproduce because of the complexity of the instrument itself. It is a percussive string instrument. When one of the hammers strikes a sting, the string itself does not make a very loud noise. The string is connected to a sound board through a bridge. The much larger soundboard vibrates and amplifies the initial sound. Thus, the wood itself imparts a noticeable quality to the sound. Several other instruments such as acoustic guitar, violin, etc also use tonewood to amplify sound. Thus, when listening to a piano being played back on a set of speakers, it lacks much of the original texture of the actual instrument. It sounds like a recording of a piano, not an actual piano.

This made me think of ways to improve that reproduction.

A DML uses a large flat surface to reproduce sound. The large surface area and the bi-directional nature of the panel means the sound will be defuse and not directional as is the case with conventional speakers at higher frequencies.

The principle characteristics of material used in a DML is stiffness and density. The less dense (light weight) and the stiffer the better. All materials have internal resonances, some decay quickly and others, such as steel will ring for a long time. A ringing reverb sound would be undesirable in most cases. Tonewood has suitable stiffness, a relatively high sound radiation coefficient, varies in density according to species and generally dampens high frequency harmonics. Pianos often use Sitka Spruce for sound boards.

I made two terminated transmission line speakers last summer. Those sound great, but using one driver to reproduce all sound from 20-20,000 Hz has a drawback; the high end lacks detail and is very directional.

A bit of research shows that Poplar has good to very good tonewood qualities while being inexpensive and readily available at the local big box hardware store. Thus, I purchased several 1/4 x 6 x 48 inch (6 x 152 x 1220 mm) planks and a few pieces for bracing to make two 33 x 22 inch (838 x 559 mm) flat panels. The idea here is to gently cross over the transmission line speakers at 4,500 Hz with these flat panels.

The assembly process was pretty easy. It took perhaps two hours to cut all the pieces to the right size. I used a router to chamfer the edges of the back bracing, mostly to reduce the weight of the brace. Everything was glued up and allowed to dry for 24 hours.

Gluing the parts together
Back bracing

The bracing is designed to keep the panel stiff and helps with structural integrity. I sanded the fronts and backs of the panels, then finished them with Tung Oil.

Dayton tactile exciters

Each panel uses two Dayton DAEX32QMB-4 tactile exciter wired in series. There is also a Zobel network which is important for a tube amp. Most driver’s impedance will rise as the frequency increases. This rising impedance is mostly reactance from the driver coil. For solid state amps, this is not much of a problem. However, tube amps, because of the output transformer, need a fairly constant impedance across there output range. This is because the output transformer is a ratio device. The primary impedance is derived from the impedance on the secondary (e.g. what the secondary is terminated with). For example, a certain tube has a 5,000 ohm plate impedance. The output transformer is chosen to match this design specification. The output transformer is designed to drive an 8 ohm loudspeaker. However, the driver impedance rises to 16 ohms at 15 KHz and 24 Ohms at 20 KHz. Under those conditions, the tube would be seeing a 10,000 ohm impedance at 15 KHz and a 15,000 Ohm impedance at 20 KHz. This will lead to added distortion. The Zobel network keeps the impedance fairly uniform across the entire audio range.

Rather than build a cross over into the transmission line speakers, I made an external unit. This allows the speaker system components to operate independently if needed. I can easily change the cross over components for a different crossover point. I can also mix and match things in the future. In other words, it gives me a great deal of flexibility for future projects and experimentation.

Crossover and HF attenuator
Crossover and attenuator components

I made these small boxes to match the speakers. These contain the crossover and HF attenuator. The attenuator is necessary because the difference in efficiency between the transmission line driver and the tactile drivers on the DML.

The schematic looks like this:

Cross over diagram

I kept things as simple as possible. Yes, I could have made a 12 dB per octave crossover with a few additional components, however, I like the gentle blend of both drivers in the mid ranges.

A basic sweep with Room EQ Wizard shows a fairly flat response. There is a room resonance around 90 Hz which I intend to correct with some sound deadening materials in the corners and possibly a bass trap.

Room EQ Wizard waterfall display

This shows that the speaker system is relatively flat from about 200 Hz to 10 KHz. Those bumps and dips from 88 to 250 Hz are all room due to room resonance.

Room EQ Wizard SPL graph

How does it sound? Pretty good! Here is some copyright free music, recorded from youtube, then re-uploaded to youtube! It is not the best video, there is some background noise, etc. However, it give a pretty good idea of how these sound.

A bit of good news?

We were doing some overnight maintenance on one of the class A AM’s in New York the other night. The aged Automatic Transfer Switch on the electrical service entrance needed to be replaced, thus the power to the entire facility needed to be cut while the old switch was removed and the new switch installed.

During this period, we took the opportunity to do some maintenance on the main and aux towers. All went well. We also notified the National Radio Club that the station was going to be off the air so that their members could log some rare DX. My thought process here was that we might also find a few daytimers who were still on the air or a DA night who was operating with their daytime facilities. A quick look at MW list shows that there are several such stations on 770 KHz:

MW list, North American 770 KHz

Alas, the answer was no, nobody was on the air who should not have been. Reports from Cape Cod, Massachusetts; New Foundland, Canada; Manassas, Virginia; West Union, South Carolina; and south west, Ohio have Cuban and South American stations on the air (Radio Artemisa, Radio Rebelde, Radio Oriental) but all of the east coast daytimers are off.

The 180 degree main mast for WABC is in good shape. You can deride AM and say it is outdated. However, it still gets out and covers vast distances.