MPX over IP

In the progression from Circuit Switched Data to Packet Switched Data, I can think of many different applications for something like this:

FMC01 MPX to IP CODEC
FMC01 MPX to IP CODEC

The FMC01 MPX to IP encoder can be used for multi-point distribution (multi frequency or same frequency network) of FM Composite audio, or as a backup solution over a LAN bridge, LAN extension, or public network.  I can think of several advantages of using this for a backup when composite analog STL’s are in use.  There are many compelling reasons to extend the LAN to the transmitter site these days; Transmitter control and monitoring, security cameras, office phone system extensions, internet access, backup audio, etc.  I would think, any type of critical infrastructure (e.g. STL) over a wireless IP LAN extension should be over a licensed system.  In the United States, the 3.6 GHz WLAN (802.11y) requires coordination and licensing, however, the way the rules are set up, the license process is greatly simplified over FCC Part 74 or 101 applications.

Another similar CODEC is the Sigmacom Broadcast EtherMPX.

Sigmacom Broadcast EtherMPX CODEC
Sigmacom Broadcast EtherMPX CODEC

Features include:
• Transparent Analog or Digital MPX (MPX over AES), or two discrete L/R channels (analog or AES).
• Built-in MPX SFN support with PTP sync (up to 6.000km in basic version). No GPS receivers!
• Unicast or Multicast operation to feed unlimited number of FM transmitters with MPX from one encoder.
• Linear uncompressed PCM 24-bit audio.
• Very low audio latency: 2,5mS in MPX mode.
• Perfect match with Sigmacom DDS-30 Exciter with Digital MPX input.
• Can be used with high quality 802.11a/n Ethernet links.
• DC coupled, balanced Analog inputs & outputs with -130dBc noise floor.
• No modulation overshoots due compression or AC capacitor coupling.
• Decoder provides simultaneously Analog & Digital output for transmitter redundancy.
• Aux RS232 serial transparent link, Studio to Transmitter.
• Auto switchover to Analog input when Digital signal is lost.
• Centralized remote control & management software

One last thought; separating the CODEC from the radio seems to be a good idea. It allows for greater flexibility and redundancy. Using an MPX type STL allows sensitive air chain processing equipment to be installed at the studio instead of the transmitter site.

Fifth Generation WLAN

Like all data carrying technology, WLAN, or WiFi, continues to evolve into a better, faster and more robust platform.  The IEEE wireless ethernet specification 802.11ac combines all of the past developments, plus some added features, into one specification.  Here are some of the highlights:

  • Operation on 5 GHz only.  Many more available channels in this spectrum than in 2.4 GHz
  • Increased channel bonding making wider channels carrying more data.  In the 5 GHz spectrum channels are 20 MHz wide and do not overlap.  802.11ac allows for 40, 60, 80 or even 160 MHz channels.  This is great for short distances, longer distances will be prone to greater interference over wider channels
  • Modulation schemes that allow up to 256 QAM.  A 256 QAM constellation is going to look pretty crowded unless it is on a wide channel.  Again, this would be good for short distances.
  • Increased MIMO.  Up to 8×8 MIMO (Multi In Multi Out) which can greatly improve throughput.  MIMO means multiple transmitters and antennas in the same unit.  The first number is the transmitter count the second number is the antenna count.  Thus an 8X8 system will have eight transmitters and eight antennas.  This allowed beam forming by use of phased antenna arrays, which can greatly reduce multi-path
  • MU-MIMO (Multi-User MIMO).  Basically, the access point sends the data frame only to the desired host, thus instead of acting like an ethernet hub sending the frame to every connected host, the AP is acting more like an ethernet switch.
Comparison of 802.11n to 802.11ac
Comparison of 802.11n to 802.11ac

The goal of all of these modifications is to get gigabit transfer rates over WLAN.

What does all of this have to do with radio broadcast, one might ask.  That is a good question.

There are several applications that have to do with remote broadcasting.  Many sports areas, night clubs, or other likely places to be broadcasting from have WIFI installed.  Using a laptop with an AoIP client installed not only can connect to the studio for audio delivery, the same laptop can use RDP or VNC to control the station’s automation computer as well.  This means easier integration of the remote into voice tracked or syndicated programming.

Secondly, wireless LAN bridges between studio and transmitter site can act as a STL, a backup STL, a remote control return link, bridge for a network connected transmitter,  VoIP phone link, IP security camera back haul or almost anything else that can send ethernet data.  I have found it useful to simply have a computer available at the transmitter site, even if it is only to download manuals and what not.  We have taken several old Windows XP machines and reloaded them with a Linux variant and installed them at various transmitter sites.  It saves the trouble of having to download a manual on the smart phone then page back and forth across a really small screen to read it.  As for using unlicensed WiFi to link to a transmitter site; the link between the WICC studio and transmitter site runs a 78 Mbps most days.  This is a two mile link over mostly water.  I will say, when there is fog, the link rate drops to 32 Mbps, which is still pretty good, all things considered.

Of course, office network applications; laptop, tablet, smartphone and other personal devices.

Finally, Broadcast Engineers really need to keep abreast of networking technology.  There are many, many applications for WiFi units in the broadcast industry.

The Kintronic Isocoupler

Had a problem with this Kintronic FMC-0.1 isocoupler the other morning.

Kintronic FMC-1.0 STL ioscoupler
Kintronic FMC-1.0 STL isocoupler

After an overnight drenching heavy rain and very high wind, the STL transmitter associated with this unit was having high VSWR faults.  This isocoupler crosses a base insulator of an AM 50 KW directional antenna.  This particular tower has negative impedance, which is to say, it sucks power out of the pattern and feeds it back to the phasor. An interesting discussion for another time, perhaps.

Using a dummy load, we isolated the problem to the isocoupler by first connecting the load to the output on top of the unit (problem still exists) then to the transmission line prior the unit (problem went away).  Of course, the AM station had to be taken off the air to do this work.

Once the issue was confirmed as the isocoupler, I opened the unit up and found that water had entered and pooled in the top of the bottom half of the isolation transformer.

Kintronic isocoupler transformer
Kintronic isocoupler transformer

The isolation transformer consists of two loops to ground capacitively coupled through air dielectric. The issue is with the opening around the top of the unit, under the lip of metal lid. Apparently, this allowed water in.

Kintronic isocoupler isolation transformer
Kintronic isocoupler isolation transformer

It is difficult to tell with the lighting in this photograph, however, the bottom part of this isolation transformer has water pooled around the center insulator.  Using a rag, I cleaned out the water and dirt from the center insulator.  After reconnecting the antenna and transmitter transmission line, a quick check revealed the problem was much better, but still not completely gone.  I suspect water seeped further down into the bottom half of this unit.  The repair work was good enough, however, to return both stations to the air.

Glad to get that bit of work done while it was still relatively warm out.