Radio Guide; The Magazine

As some of you may have noticed, recently I have been writing some articles for Radio Guide. There are several good reasons for this, but the most important one is education. I believe that terrestrial radio will be around for a few more years. As others have noted, there are fewer and fewer broadcast engineers. Those that understand high-power RF and all its intricacies are fewer still. It is important that a cadre of knowledgeable broadcast engineers carry on.

The internet is a great thing. However, it depends on cables of some type to exist. As we know, cables can be damaged. In addition to cables, there are routers, core switches, servers, and so on. All of that equipment can fail for various reasons. People have been working hard to improve the resiliency of the internet. That is a good cause, to be sure. However small it may be, there is still a chance that the internet can fail. Worse still, this can happen during some type of natural disaster or other emergency. Thus, during such an emergency, Radio can and will function as a vital information source provided that the station is on the air and has a program feed. That is also a good reason to keep the current RF STL paths in place as much as possible.

The Radio Guide articles are a great way to pass along some of that hard-earned experience to others. I also want to put supplemental information here for those interested to download. Things like charts, forms, pictures, videos, etc.

What I am planning on is to list the articles here, then put links to any supplemental information provided below that subheading.

A bit of good news?

We were doing some overnight maintenance on one of the class A AMs in New York the other night. The aged Automatic Transfer Switch on the electrical service entrance needed to be replaced, thus the power to the entire facility needed to be cut while the old switch was removed and the new switch installed.

During this period, we took the opportunity to do some maintenance on the main and aux towers. All went well. We also notified the National Radio Club that the station was going to be off the air so that their members could log some rare DX. My thought process here was that we might also find a few daytimers who were still on the air or a DA night who was operating with their daytime facilities. A quick look at MW list shows that there are several such stations on 770 KHz:

MW list, North American 770 KHz

Alas, the answer was no, nobody was on the air who should not have been. Reports from Cape Cod, Massachusetts; New Foundland, Canada; Manassas, Virginia; West Union, South Carolina; and southwest, Ohio have Cuban and South American stations on the air (Radio Artemisa, Radio Rebelde, Radio Oriental) but all of the east coast daytimers are off.

The 180-degree main mast for WABC is in good shape. You can deride AM and say it is outdated. However, it still gets out and covers vast distances.

Resurrection of a different sort

I just finished a full alignment of my Kenwood R-2000 receiver and tonight I am treated with the pleasing tones of “Jazz from the Left,” on WRMI. Jazz from the left means the west coast sound, aka Smooth Jazz as I am given to understand. I spent some time on the west coast and beyond. I have fond memories of those years.

It is amazing to me still, that a simple AM receiver demodulating +/- 4.5 Khz audio bandwidth from 1,057 miles (1701 km) away can sound that good. That is being received directly; no Internet Service Provider, no satellite service, just a transmitter, and a receiver.

There is an art to all this, which is being forgotten. A few minutes with a manual, a volt meter, a tone generator, and a non-conductive screwdriver can bring something that was neglected back to life sounding as good as the day it left the factory 35 years ago. Try that with your very expensive iPhone 10,000,000x! Of course, you will need those tiny pentalobe tools to get the screws out. Apple would rather you return your expensive i device to their expensive i store so that their i geniuses can fix it for you.

I don’t know, maybe I am an old fart. Perhaps the right to repair the appliances that I purchased and therefore should own is an old-fashioned point of view. After all, all of these corporations have my best interests at heart, right?

I recommend you support your not-so-local shortwave stations by listening to and supporting their programmers. Even in 2021, there are still many shortwave broadcasts that are worth listening to!

The future of Broadcast Engineering

Nature abhors a vacuum.

There has been a lot of hand-wringing and ink spilled recently on the titled subject. The problem seems to be particularly acute when it comes to RF knowledge. I agree with those concerned that there are very few new (read also as young) people entering the field. There are a number of reasons for this; competing technical fields that pay more and are generally easier to work in, the very broad knowledge base required for Broadcast Engineering, and the lack of awareness by major stakeholders.

It seems obvious that for as long as there are radio and television stations, there will need to be those people who install and maintain the transmission systems. The question is, how to attract new people into that field? In order to answer that question, a follow on question would be, what exactly does a Broadcast Engineer do?

This can be broken down into three very broad areas:

  1. Conversion of the art into electronic form. In other words, capturing sound and video with cameras and microphones. What are the various analog and digital formats, how are those signals routed, edited, stored, retrieved, and transmitted. What are the various bit reduction (e.g. compression) formats. How these live streams and stored files are mixed to generate the final program material.
  2. Transmission of the program material. Meaning moving the program to the transmitter site and broadcasting it for public reception. This would involve knowledge of Studio To Transmitter (STL) systems which can vary greatly but often include satellite distribution, public internet, fiber, RF wireless microwave systems, etc. The next step is the actual transmitter, filters, combiners, transmission line, and antenna. Knowledge of all regulatory (in the US, FCC) obligations including EAS, Tower lighting and marking, transmitter operations; power level, interference, etc.
  3. Physical plant systems. Broadly speaking; HVAC, electrical power, emergency generators, towers, fire suppression, etc.

These work categories can be further broken down into three functions; installation, maintenance, and replacement.

Since I have been more involved in the management side of things lately, I find that most of my problems are people problems. What may be a surprise to some is, Broadcast Engineers are people. What may be even more shocking; people have interests. Those interests are the reason why they chose to work in a technical field. Forcing the IT guy to go to the transmitter site to see why the generator won’t start is not a good use of resources.

Looking at the very large skill set that a competent Broadcast Engineer needs to function in a modern broadcast facility, the first part of the answer becomes obvious; more specialization. Break down these broad categories into separate skill sets. Since it seems that many things are headed toward the IP domain, Broadcast IT should become a thing separate from office IT. While the two are similar, Broadcast IT requires more knowledge of physical wiring, switch architecture, VLANs, subnets, IP streaming protocols, audio formats, video formats, transport streams, etc.

RF infrastructure has its own set of rules, including personal safety requirements. A solid electronics/engineering background is required to understand how transmitters work, what various failure modes are, and what can cause them.

Physical plant work most often can be contracted out to various vendors. However, that work needs to be supervised by a competent station representative.

The next item is the thing that nobody wants to talk about; the importance of work/life balance. This means not utilizing a broadcast engineer as a piece of equipment to be worn out and discarded when the performance level drops below expectations. I know several broadcast engineers who have left the industry because of this. Worse still, there are those who have died of heart attacks or committed suicide. Work/life balance also includes proper compensation, so those people can afford to pay for essentials, have a reliable vehicle, healthcare, etc.

Of course, many smaller operators cannot afford to hire an RF specialist and a Broadcast IT specialist plus pay contractors to do physical plant maintenance. This is where contracting can fill in the vacuum. If contracting becomes the new normal, then how does the next generation of Broadcast Engineers get trained? Broadcast transmitter manufacturers have some training courses available as does the SBE. However, there is no substitute for hands-on experience. While many Broadcast Engineering evolutions are similar, no two situations are the same, and thinking on your feet is a job requirement. How are new people coming into the field get the necessary experience? The situation is not untenable, however, it will require some creative thought.