Repairing an RF module for a DX-50

I like these types of posts. Many people are intimidated by component-level repairs. I write this to show that it is possible, with minimal test equipment and easy-to-understand directions, to make repairs and get things back in working order.

Every year, we lose two or three RF amplifier modules from the DX-50s. Normally, this happens after a thunderstorm. Sometimes it is a spontaneous failure.

The project starts here; faulted RF module

These are fairly simple medium-wave RF amplifiers. There are no adjustments or tuning circuits on the amplifier board itself. They use eight IRFP-350 RF devices. There are two fuses to protect the transmitter power supply against device short circuits. If a fuse blows; Section C, RF amplifier Modules, of the DX-50 manual has a good troubleshooting guide. There is a very good chance that one or more of the RF devices is bad. Unfortunately, they have to be removed to be tested.

Gates Air recommends that if one device is failed, all four devices from that section are replaced at the same time even if they test good. The IRFP350s are inexpensive devices and it is easier to replace everything at once. The Mouser Part number is 844-IRFP350PBF and they are $3.81 each as of this writing. The PBF suffix means it is lead-free.

The other part that can be bad, but it is unlikely, is the TVSS diode across the gate and source (CR1-4). These are inexpensive as well. Mouser part number is 576-P6KE20CA and they are $0.38 each. It is good to have a few of these on hand.

Heatsink removed from the module

The most difficult part of this is dealing with the heat sinks. The devices get stuck to the heat sink pads after so many years, so it takes a little effort to get them separated. The manual recommends gently prying the device away from the heat sink with a small screwdriver. They can be reused if you are careful and do not rip the insulator pad. However, if the insulator pad rips, it needs to be replaced. Mouser part number 739-A15038108 ($0.86 each).

To test each IRFP350 after it has been removed, use either a DVM with greater than 3 VDC on the resistance setting or a Simpson 260 on the Rx10,0000 range. Connect the positive lead to the Drain, the negative lead to the Source, and then use a jumper connected to the Gate to turn the device on or off. Alternatively, you can use a 9-volt battery to turn the device on and off.

If the device does not turn on or off, it is defective.

The TVSS diode should measure open (>2M) in both directions. Anything other than that, the unit is defective and needs to be replaced.

DX-50 module, heatsinks removed

The first step is to remove the heat sink. I used a small screwdriver under the leads to gently pry the MOSFETS off of the heat pads. If you are careful, all of the heat pads will survive. Once the heat sink is off, I remove all four of the suspected MOSFETS. The leads are heavy gauge, so it takes a little bit of work with the solder pump and solder wick. I tested each MOSFET and found one shorted unit, the other three test okay. However, since these are inexpensive devices, I replaced all four.

DX-50 module, MOSFETS removed

Good device:

Device off
Device on

Bad device:

Device shorted

Assembly is in reverse order. Make sure that none of the insulating pads were torn during disassembly. I like to get everything attached to the heat sink before soldering the leads. It helps with lining everything up. Take care and make sure that the ferrite beads on the drain leads of Q3,10 and Q4,11 are re-installed with the new devices. These are necessary to prevent high-frequency oscillations.

Ferrites

Of course, the final test is in the transmitter. Generally speaking, I test the standby transmitter into the test load every two weeks. This is done in conjunction with the generator load test so as not to spin up the demand meter.

Excel spreadsheet formulas for Broadcast Engineers

There are many times when some mathematics is needed in this profession. For one-off situations, the calculator applications found on most smartphones will work just fine. However, sometimes the calculation is complex or is needed to be repeated many times. Excel Spreadsheets have many mathematical functions built in. Plugging a formula into an Excel spreadsheet is a handy tool.

I recently acquired this rather nice precision power meter:

Mini Circuits precision power meter

It has an input power range of -60 to +20 dBm with a stern warning not to exceed +23 dBm. Since we will be using this for a variety of applications, I thought it might be useful to know approximately how much power will be presented to the instrument in any given situation. For example, we are installing a 30 KW FM transmitter soon. The directional coupler that will be used has a coupling factor of -48.5 dBm. The TPO is 28,000 watts.

The formula to convert Watts to dBm is dBm=10 X Log10(Pw) + 30, where Pw is power in Watts. Thus dBm=10 X log10(28000) + 30 or 74.4715 dBm minus the 48.5 dBm coupling factor which is 25.9715 dBm. That is too much input for this power meter. A 20 dB attenuator will need to be used.

Since I will be using this meter in other places, rather than doing that calculation over and over again, why not build an Excel spreadsheet? That would make it easy to check.

A simple Watts to dBm calculator in Excel looks like this:

=(10*LOG(C6))+30

This is copied into cell C11. C6 is the cell in which the Transmitter output power in watts is entered. The other cells contain the coupling factor (C5) and external attenuation (C7) In application, it looks something like this:

Excel spreadsheet power meter calculations

You can arrange these any way you like, just change the cell numbers to suit your needs.

I like to make the data entry cells green. You can lock the formula cells so that the formulas don’t get changed accidentally. Below the Approximate port power cell, is the IF statement that will return either a “LOW”, “HIGH”, or “OK” depending on the result value in C11. That looks like this:

=IF(C11>C9,"HIGH",IF(C11<C8,"LOW","OK"))

The spreadsheet itself is downloadable: Power meter port calculator

It would be very easy to make a system gain/loss calculator for using the licensed ERP to calculate the proper TPO.

Other examples of useful Excel spreadsheet formulas:

To convert from dBm to watts:

=10^((B22-30)/10)

B22 is the cell in which the power in dBm is entered. These can be any place you want on the spreadsheet.

Radio Frequency to Wavelength in Meters:

=299792458/B10 

Where B10 is the cell in which the frequency in Hz is entered. 299792458 is the speed of light (Meters per second) in a vacuum. If you wanted the input frequency to be in kHz, simply move the decimal point for the speed of light three places to the left, e.g. 299792.458. For MHz move the decimal four places to the left, GHz five places, etc.

Convert electrical degrees to Meters:

=(299792.458/B10)/360*B11

Where B10 is the frequency in kHz and B11 is the number of electrical degrees in question.

An example of that in an Excel Spreadsheet can be downloaded: Frequency to Wavelength converter

Audio Frequency to Wavelength in Meters:

=(20.05*(273.16+B11)^0.5)/B12

Where B11 is the air temperature in degrees Celsius and B12 is the frequency in Hz. Room temperature is normally about 21 degrees Celsius (about 70 degrees Fahrenheit). Humidity and altitude can also affect the sound wave velocity, which will affect the wavelength.

Base (or common point) current calculator using base impedance and licensed power:

=SQRT(B12/B11)

Where B12 is the License power in watts and B11 is the measured base impedance of the tower (or common point impedance of the phasor).

Convert meters to feet:

=B11/0.3048

Where B11 is the length in meters

Convert feet to meters:

=B12*0.3048

Where B12 is the length in feet.

Convert degrees F to degrees C:

=(B11-32)/1.8

Where B11 is the degrees Fahrenheit

Convert degrees C to degrees F:

=(B12*1.8)+32

Where B12 is the degrees Celsius. In this case, the order of operations will work without the prentices but I kept them in place for uniformity.

Convert BTU to KW:

=B11/3412.142

Where B11 is the BTU/hr

Example of an Air Conditioner load estimation:

=(B11*B12-B11)*3412.142

Where B11 is the TPO, B12 is the transmitter AC to RF efficiency. The output is in BTU.

There is an entire list of Excel functions here: Excel Functions (alphabetic order)

You get the idea. Yes, there are smartphone applications as well as online calculators for most of these functions. However, I have found smartphone apps are becoming more painful to deal with as time goes on, mostly due to the ads. App developers need to make money, and you can buy apps for things that are often used. However, it is nice to have these types of calculators available offline. Besides, it is fun to play around with Excel formulas.

WKIP; removal of the taller tower

This is the original tower for WKIP, but not the original antenna. It was put up circa 1960 or so and like many towers from that era, has hollow legs. Thus, after 60 years or so, it is deteriorating from the inside out.

WKIP tower #1

This was part of a two-tower directional array. It is odd that a class C station on 1,450 KHz would have a directional antenna at all. Even stranger still, it was directional daytime, non-directional night, both at 1,000 watts. The reason for such an odd situation; the station was co-owned with WGNY in Newburgh and the daytime coverage contours would have overlapped without a directional array. The taller tower is 215 degrees tall with top loading. During the daytime, the pattern goes to the North and it covered very well.

Vertical Bridge, the tower owner, decided it was time to replace the aging structure with a monopole. They are completing the project this summer. Our part is to move WKIP to the shorter tower and put up a temporary FM antenna for the translator. Once the project is completed, WKIP will operate from the shorter tower (which is 85 degrees) permanently, getting rid of the now unnecessary directional antenna on a class C channel. The translator antenna will move back to the monopole, once it is put up.

Problems… Yes, we have a few of those…

WKIP tower #2 with broken guy wire

First, the short tower had a broken guy wire. Actually, the guy wire was fine, but the lowest grip connecting to the equalizing plate was rusted through. It is fortunate that this was discovered because the upper guy wire was getting ready to let go too. Northeast Towers was able to replace all of the grips on that set of guy wires and re-tension the tower. They did a full investigation of all of the other anchors prior to any climbing. This is in a swamp, which has flooded several times over the last few years.

Tower #2, guy wire repaired, Scala FMVMP translator antenna mounted

Next, the temporary FM translator antenna was hung on the tower. It was thought that the 3/8 sample line from the old AM sample system could be used as a temporary transmission line for this system. Unfortunately, that line turned out to be 75-ohm cable TV drop line and was not suitable for transmission of VHF. We had about 600 feet of leftover 3/8 sample line (Cablewave FCC 38-50J) from a decommissioned AM site, so we used that instead. It has quite a bit of loss on VHF, however, for temporary use, it will work.

Black Rat Snake, harmless and helpful
Black Rat Snake

Next, it seems this black rat snake had taken up residence in the ATU cabinet. The bottom of the ATU was full of mouse nests going back many years. One of our employees dutifully cleaned out the mouse nests unknowingly under the watchful eyes of this snake. Only after he was done, did he see the snake coiled up on the disused current meter shunt. There was a mild freakout for several minutes, but the snake left on his own and we got back to work. The black rat snakes are helpful to have around, but perhaps best if he stays outside of the ATU. We will seal up the entryway for the coax, which seems to be where all the critters are coming in.

Kintronic ISO-130-FM-N Isocoil

This Kintronic Isocoil was mounted to the back of the ATU with unistrut. Even though this is a temporary installation, I have found that sometimes temporary things can last much longer than anticipated. Besides, it was easier than trying to use pressure treated 4 x 4 lumber.

Next, we measured the ATU with the fancy machine (Agilent E5061B network analyzer). In theory, the ATU input should be 50 ohms to match the incoming transmission line. No, instead it was 38 Ohms -j20.

So, a little bit of a retune was required. With the fancy machine, we were able to get it to 52 ohms -j9 or so. This is good enough for now, there will be numerous cranes in the air and the station has an STA to run at 250 watts for the project’s duration. After the new monopole is up, we will measure the base impedance of the tower and tune up the ATU for 50 ohms and then return the station to full power at 1 KW.

Smaller crane, used to assemble the larger cranes

The old tower coming down:

Top section and top loading wires separated

Two cranes were used; one to hold and lower the tower section, the other to lift two tower workers to cut away the sections. The tower was deemed unsafe to climb, therefore it had to be removed like this. It was also unsafe to drop because of the proximity to the studio building and the other tower, which is being retained.

Top section being lowered
Next section removed and being lowered
Next section removed

You get the idea. These tower sections and guy wires were cut up and put in a scrap metal dumpster. They will be recycled into something else.

Now, they will work on removing the old tower base and putting up the monopole. Once that is done, we will tune up the AM on the short tower and get it back to full power.

Digital Audio Broadcasting Survey results

I have been looking over this data for a few weeks and there are some interesting data points. First, I would like to thank everyone who participated. This is not a scientific poll, but rather an informal survey of those who chose to participate.

The survey consisted of ten questions and was posted on Facebook, Reddit as well as Radio World. There were 114 responses, which is a relatively small sample size and is less than anticipated. There were 5 people who opened the survey and then did not take it. This may indicate a level of apathy towards the subject. Most responses were from the United States, but there were a few from China, Europe, and Brazil. The average time to complete the survey was 1 minute 40 seconds.

The first question was a warm-up question and it shows a lukewarm response at best with the top two responses being “It’s Okay,” or “I am indifferent.”

A vast majority of respondents feel that testing other Digital Audio Broadcasting systems such as DRM30, DRM+, or DAB+ would be a good idea. In MB docket 19-311, the FCC left the door open for such testing in the future, stating in paragraph 26 “Finally, we (the FCC) emphasize that by approving use of HD Radio technology, we do not foreclose the possibility of authorizing alternative technologies in the future, if they are properly before us.”

Question #2 was an attempt to find out where most people are listing to HD Radio and radio in general. Not a great surprise that it is mostly in-car listening. The in-home listening is a little bit surprising. What is even more surprising is that 30% of the respondents do not have an HD Radio. HD Radio has been the digital audio broadcasting standard in the US since October 2002, when the FCC first authorized its use. Receivers are still an issue some 20 years into the project. I know that when I purchased a new vehicle (Ford) in April of this year, HD Radio was not an option in any but the highest trim packages. My first HD Radio receiver was a tabletop Sony XDR-S3HD purchased in 2006 or so for $200.00 which was a lot of money. A quick look on Amazon shows that the least expensive HD Radio is the Sangean HDR-14 for $70.00.

Questions #3 and #4 deal with the “analog sunset,” as originally proposed by iBiquity, the developer of HD Radio technology. After a period of time, according to the original plan, stations would turn off their analog signals in favor of all digital transmissions. In October of 2020, MB Docket 19-311 the FCC has allowed AM stations the option to do just that. Thus far, four AM stations have transitioned to all-digital broadcasting, one of which is off the air since the owner passed away.

According to the survey respondents, by a slim margin of 53-47%, all-digital AM is supported. The FCC has yet to consider all digital FM and by an equally slim margin of 46-54%, all digital FM is not supported.

Question #7 asks about perceived audio quality. I received a few email comments about this question. Three respondents noted worse audio quality on HD-2, HD-3, or HD-4 channels due to reduced bit rate CODECS. Five people skipped this question.

This gets to the crux of the problem; for radio station owners, it is expensive to purchase and install HD Radio equipment. If there are no great perceived improvements, what is the point? I find AAC audio codecs to be okay, however, there is a noticeable difference between CD player PCM and streamed audio no matter what the source. Low-bit rate codecs sound like they are coming from underwater. Why do we listen to the radio? Information and entertainment. I posted something many years ago: Listening to the Radio is like doing Cocaine. For the maximum dopamine effect, I like my music to sound like music, not some watery approximation.

Question #8 asks about additional features, most people find Program Associated Data (PAD) useful. Even in non-digital FM stations, RDS is an important feature and stations will get phone calls if the RDS is missing or stuck on one song for a prolonged time. Listeners have become used to glancing at the radio to answer that age-old question; what’s the title of this song?

In response to question #9 (How many hours per week do you listen to the radio (including streaming terrestrial broadcast radio stations via a website or smart device)? The average was 19.6 hours with a minimum of half an hour and a maximum of 90 hours. Interestingly, there were four people who put in 0 weekly listening hours.

Question #10 is very interesting. In spite of the lukewarm feelings it seems that most respondents would favor the FCC mandating a transition to all digital audio broadcasting by a margin of 62% with most opting for “at some point in the future.”

HD Radio has been stalled for some time. The technology has not lived up to the hype and for most stations, it is a way to feed an analog translator with additional programming. There is an overall lack of interest, the majority of those who did take the survey stated HD Radio was “okay.” Receivers are expensive and still difficult to obtain. All digital AM (HDMA3) has not progressed very far since the FCC allowed its use. Yet, the people who did respond felt that additional testing of various Digital Audio Broadcasting systems should be allowed. I don’t know, that ship may have already sailed.