Installing a WISP on an AM broadcast tower

This is an interesting project currently underway at one of our client’s AM sites.  They have decided to go all in and create a WISP (Wireless Internet Service Provider) for the community around the AM tower.  I thought it would be interesting to explore this topic, as there are not many opportunities for AM towers to lease vertical real estate.

First a few basic ideas.  For an AM broadcaster, (aka medium wave or standard broadcast band) the entire tower is part of the transmitting antenna.  There are two types of towers; series-excited and shunt-excited.  A series excited tower has a base insulator, like this:

AM tower with base insulator
AM tower with base insulator

A shunt tower usually has a series of wires called a skirt, separated from the tower by standoffs, which go to the top of the tower or nearly to the top of the tower. The base of the tower is grounded, like this:

AM tower with out base insulator
AM tower without base insulator

A shunt-excited tower has distinctive advantages for co-location opportunities in that the tower itself is grounded, greatly simplifying placing additional antennas on the towers.  That is not to say that antennas can not be installed on series excited (insulated) towers, it just requires an extra step of using isolation coils.

In all cases, the tower should have a structural study done to insure that the additional antennas do not overload the tower and cause structural damage or collapse.

In this case, the tower is new and was designed for the extra load.

The plan is to create a sectorized wireless internet system using four 90-degree panels, each with three access points.  A tower-mounted sixteen-port switch is mounted behind the panel antennas and the switch communicates with the ground-mounted router through two fiber optic cables.  A 54-volt DC supply powers the switch, access points, and point-to-point radios mounted on the tower.  There are two fiber runs, one is for subscriber traffic and the other is for radio management.  This system is using Ubiquiti gear.

Ubiquiti 90 degree sector antennas and radios
Ubiquiti 90-degree sector antennas and radios

A word or two about Ubiquiti gear.  Ubiquiti specializes in cheap equipment manufactured in China.  That is a double-edged sword.  On the plus side, if anything breaks or gets damaged by lightning or whatever; throw it out and install a new one.  On the negative side, I  have seen Ubiquiti gear do some strange things, particularly after a firmware upgrade.  The newer stuff seems to be better than the older stuff.  All that being said, as this is a brand-new operation and seems to be a proof of concept, then the Ubiquiti gear will be fine to start with.

Going up
Going up

The tower crew made quick work of installing the sectorized access points.

Tower crew waiting for equipment lift
Tower crew waiting for equipment lift

Going up the face of the tower, there are the aforementioned fiber cables, the 54 VDC power cable, and one backup Ethernet cable.  All of the Ethernet jumper cables used to connect the access points to the switch are UV-rated, shielded Cat 5e, and use shielded connectors.  This is very important on a hot AM tower.  Due to the skin effect, the shield on the shielded cable protects the interior twisted pair conductors from the high AM RF fields present on the tower.

Transtector LPU 1101-1158
Transtector LPU 1101-1158 Ethernet cable protection unit

At the base of the tower, the DC power cable and the Ethernet cable go through high-quality lightning protection units.  These are Transtector 1101-1158 Ethernet and 1101-1025 48-volt outdoor DC power units.  Even though the DC power supply is 54 volts, the 48-volt LPUs will function adequately.  The TVSS devices used in the LPU circuit are rated for 88 volts maximum continuous voltage.

Transtector 1101-1025 48 VDC lightning protection unit
Transtector 1101-1025 48 VDC lightning protection unit

In addition, I made a service loop on the DC cable with also creates an RF choke.  Several (12-14) turns of cable 18-20 inches (45 to 50 cm) in diameter act to keep the induced RF at the input terminals of the LPU low so the protection devices do not fire on high modulation peaks.  This also helps to keep the AM RF out of the 54 VDC power supply in the rack.

Making ethernet jumper cables, TIA/EIA-568B
Making ethernet jumper cables, TIA/EIA-568B

The backup Ethernet cable has a similar setup.  Regarding the Ethernet cable and induced RF, this station runs 1 KW.  As long as the shielded RJ-45 connectors are applied properly and the tower-mounted switch is grounded along with the LPU, then all of the RF should be on the very outside of the cable shield (due to the skin effect).

Base of AM tower with WISP equipment installed
Base of AM tower with WISP equipment installed

This principle also applies to lightning strikes.  Although lightning is DC voltage, it has a very fast rise time, which makes it behave like AC on the initial impulse of the strike. The voltage induced on the shield of the cable will not affect the twisted pairs found deeper within the Ethernet cable.  Of course, all bets are off if there is a direct strike on a piece of equipment.

AM stations running powers more than 1 KW, Superior Essex makes armored shielded cable called BBDG (the new trade name is EnduraGain OSP).  This cable comes with a heliax like a copper shield with an optional aluminum spiral armor.  This cable looks very robust.

Enduragain OSP armored shielded Category cable
Enduragain OSP armored shielded Category cable

On series excited towers (those with an insulated base) fiber optic cable can be used to cross the base insulator without any problems, as long as there is not any metal in the cable (armor or aerial messenger).

LBA Group TC-300 tower lighting choke
LBA Group TC-300 tower lighting choke. 180 turns #12 AWG enamel wire on 6-inch coil form.

DC power can cross the base insulator using something called a “Tower Lighting Choke.”  This device is a set of coils wound around a form that passes the DC power but keeps the AM RF from following the DC power cable to the ground.  These work relatively well, however, lightning protection units still need to be installed before the DC power supply.

Repairing a computer monitor

I have seen many a Dell LCD computer monitor go south for want of a $0.50 part. Dell must have gotten a hold of a bad batch of capacitors because almost invariably, the problem is with the power supply capacitors for the backlight. The symptoms are; the monitor goes very dim and can only be read when shining a light on it, or the power button flashes green.

A new Dell 19-inch (E1914H) monitor runs about $90.00 – 110.00.  I can repair a defective unit in about 20-30 minutes or so, which makes it worthwhile for the client.  When repairing equipment, the cost of labor and parts balanced across the cost of new equipment should be a prime consideration.  Sometimes, it is simply not worth the time to repair something.  In others, like this instance, it makes sense as long as the repair is simple.

This is a Dell E198FPf LCD monitor.  After the initial diagnosis:

Dell E198FPf LCD monitor back lighting problem
Dell E198FPf LCD monitor backlighting problem

The first step is to remove the stand and the four screws behind the stand bracket.

LCD monitor stand removed
LCD monitor stand removed

The hardest thing about this repair is getting the bezel off.  Dell uses a bezel around the monitor face that uses little plastic clips to hold it in place.  To get the bezel off, one needs to press the clips toward the center of the monitor while lifting it up.  It requires the careful application of force.

Dell E198FPf monitor bezel
Dell E198FPf monitor bezel

I start on the bottom and use a small screwdriver in one of the slots to get it started. I start on the bottom because if the plastic gets a little marred, no one will see it when the repair is finished.  Once the first clip is released, then the others and be released by twisting the bezel carefully toward the center of the monitor while lifting.

Monitor bezel removal
LCD monitor bezel removal

Once the bezel is removed, the wiring needs to be disconnected. This consists of the backlight, the data buss, and sometimes the on/off switches, which are mounted on the bezel.

LCD monitor backlight connector
LCD monitor backlight connector
LCD monitor data buss
LCD monitor data buss connector

After all the wiring is removed, there are either two or four screws that hold the power supply to the monitor screen.

LCD monitor power supply bracket  screws
LCD monitor power supply bracket screws

Finally, the power supply board is exposed.  Depending on the model of the monitor, the hex head screws that hold the VGA connector may need to be taken off.  Sometimes not.

LCD monitor power supply
LCD monitor power supply

Removing the screws on the back of the power supply board exposes the capacitors and other components.

LCD monitor bulging capacitors
LCD monitor bulging capacitors

And the culprit is discovered. These two bulging capacitors are causing the LCD monitor backlight power supply shut down making the monitor unusable. The larger one is a 1000 uF 25 volt and the smaller is 680 uF 25 volt. I replaced both with in kind 35 volt units.  I also took the liberty of replacing the rest of the electrolytics on the power supply board (total of five additional capacitors).  While the unit is disassembled, it is far easier to replace all the $0.50 components than to do it one at a time over the next few years as each fails.  This monitor should be good for another 5 years of service at least.  These values vary somewhat from monitor to monitor.  Also, if only repairing one or two monitors, the parts can be obtained at Radio Shack for $1.99 each.

It is a good way to regenerate equipment, even if they are set aside as spares.

Cable Porn

On occasion, the company I currently work for does installation work. Thus, I am always keeping my eyes open for new equipment and tools to make that job easier. The cable comb seems like it is just such a thing:

ACOM tools cable comb
ACOM tools cable comb

Instructional video from youtube:

Then there is this:

Which is simply amazing. It is described as “1320 Category 6 cables, dressed and terminated.”

Incidentally, there is an entire subreddit: reddit.com/r/cableporn for all those cable geeks that like to look at neat cabling work.

Windows XP

WDST technical operation center
technical operation center

It is time to plan and upgrade those machines running Windows XP. After April 8, 2014, Microsoft will no longer be updating the software and/or patching security holes. Many in the IT industry believe that after that date, hackers will attempt to break the popular operating system which has been in use for twelve years.

Approximately one-third of all Windows operating systems in use today are XP.  Microsoft has already warned users that potential hackers could use security patches and updates for Windows 7/8 systems to scout for vulnerabilities in XP.  I know several radio clients have automation systems and office networks that run primarily Windows XP.  Microsoft may be overstating the risks of remaining on XP, then again, they may not be. This situation has been described in several trade magazines as “A ticking time bomb,” or equally dire:  “Microsoft urges customers up upgrade or face ruin.”

In radio station infrastructure, very few systems are as vital as the audio storage and automation system.  Without a functioning automation system, most stations would be dead in the water.  If an automation system were to hack and be ruined completely, I do not think there are enough people left on most stations’ payrolls to run an operation manually, even for a short period of time.   I, for one, do not want my phone to start ringing on April 9th with a bunch of panicky managers talking about how unacceptable the situation is.