All About the 7/16 DIN connector

These connectors appear on the backs of various FM and lower-power TV transmitters. I thought it would be interesting to explore them a little bit.

First, according to Wikipedia, DIN is an abbreviation for Deutsches Institut für Normung. If you enjoy a lager or two then squint at that name you might see The German Institute for Standardization. 7 is the size of the inner conductor contact in mm and 16 is the size of the inside diameter in mm of the outer conductor. The thread is 29 x 1.5 mm.

From what I can find, the connector was originally developed for the German Military, which needed a rugged, efficient connector that was easy to install properly.

This style of connector is very popular with cellular antenna manufacturers due to its relatively high power handling capability and excellent passive intermodulation performance.

According to Amphenol, their 7/16 DIN connectors have the power handling capability of 3000 watts/1 GHz @ 25C (77F). That is a fairly low temperature. They give the working voltage as 500 V RMS continuous, which is 5000 watts at 50 ohms impedance. That, of course, assumes a 1:1 match, which is never the case. The connector is probably safe to ~2 KW in normal operating conditions for VHF and UHF TV operation.

Amphenol 7/16 plug for LMR-400 and Belden 9913

Also, keep in mind that RG-8, RG-213, RG-214, LMR-400, and Belden 9913 look similar but they use different connectors because the inner conductor of the latter two is larger than RG-8, RG-213, or RG-214. This happened on a project recently. It came time to crimp the pin on the center conductor and, oh no! The pin was too small!

A properly installed connector will be outdoor water-resistant in most weather conditions.

Hurricanes

I have been reading about WWNC Asheville, North Carolina in the aftermath of Hurricane Helene. That is an AM station on 570 KHz (5 KW DA-N) owned by iHeart Media. They have been simulcasting on all of the local iHeart signals in the area and according to WRAL-TV, have been the only source of information for people who have been cut off in the mountainous areas.

While the power is out, wired telephone service is down, cellphones and mobile data are unavailable, AM radio still gets through. Yes, FEMA has satellite phones and can work with commercial wireless providers to re-establish wireless networks and connectivity. However, it often takes them days to react and weeks to get on site.

Stations like WWNC that stay on the air during disasters are vital resources to their communities. The fact that they remain on the air requires planning and forethought. Emergency power at both the transmitter and studio is the most important and most expensive thing. After that, backup programming feeds and sources, secure shelters for personnel, food, water, and even spare clothing. Having experienced several of these events; Bill Ruck in his Radio World letter said it best, Engineers need to take care of themselves.

That means not taking excessive risks during the event, eating properly, and getting adequate sleep. Lack of sleep can lead to poor decision-making processes, making matters worse.

Sometimes transmitter sites are inaccessible or completely destroyed. Having a plan ahead of time to get some signal on the air is always a good idea. Sometimes an area is so severely impacted that there is no normalcy. Things that we take for granted are simply gone. I found the best way to deal with this is to take a step back, take stock of the situation, if you can find others who are working on disaster relief, coordinate with them, come up with a plan, then proceed carefully and be ready to adapt as the situation requires.

The next Hurricane; Milton, is taking a line towards Florida.

The Hurricane Watch Network will be active tonight at 14.325 or 7.268 MHz starting at 5 PM EDT for Amateur Radio operations and Shortwave Listeners.

WX4NHC is the Amateur Radio station for the Hurricane Warning Center. They have useful information preparedness, information gathering, and post-disaster response.

AM Shut-downs

The big question; how bad is it?

The short answer; Not terrible, not great.

Short summary in a chart:

ServiceLicenses CanceledLicensed and SilentComment
Full Power AM812105Since 1991*
Full Power FM51788Since 1991
Low Power FM50251Since 2005
FM translator1677138
FM Booster16511Since 1991
Summary of silent and canceled licenses

*1991 was the peak number of AM licenses. It also marks when the FCC record-keeping began tracking the license status of all services.

There are 10,846 full-power FM stations, 8,374 FM Translators, 1,910 Low-Power FM stations, and 373 FM boosters currently licensed as of this writing.

According to the FCC data, the peak number of AM stations occurred at the end of 1991 with a total of 4,985. As of August 2024, there are 4,303 stations. There are 105 AM stations licensed and silent.

AM station licenses are being surrendered to the FCC at an increasing rate in the post-Covid era. I like charts. It is fun to look at raw data sorted in different ways. Fortunately, the FCC’s license management system allows one to search for various categories e.g. “Full Power AM” and “License Cancelled.”

Here is a chart by year of the number of AM station licenses surrendered to the FCC:

YearLicenses surrenderedStatesComment
19921AR
19932FL, MS
19941GA
19950

199641SC, VA, GA, KY, LA, FL, NC, TX, CA, OK, AR, MT, KS, AL, PA, TN, MS, IL, MN, FL, MI, UT, ME, IAFCC 96-218 rulemaking
199733SC, NY, CT, AR, GA, LA, NJ, AL, VA, FL, ME, AZ, MS, MD, CO, WV, MI, CA, NC, SC, TX, VTFCC 96-218 rulemaking
19989PA, NC, MO, CA, WV, TX, CT, AL
199911CA, PA, LA, IN, NM, VA, NY, MD, TX, WI
20006FL, CA, VA, WV, PADot-Com crash
200112IA, NC, SC, IA, AR, ND, CA, VA, RI, OK, OH
200214MI, GA, TX, PA, IA, MI, AR, AK, KY, MS, MP (Northern Mariana Islands)
200315CA, AK, MI, PA, MS, ME, CO, GA, KY, AL, CO, VA
200434NC, GA, CO, MS, SC, PR (Puerto Rico), LA, MI, OH, TX, FL, AR, CA, UT
200511TX, GA, CA, AR, IA, PA, MI, OR
200616TX, PA, AR, MI, OR, MS, IL, MN, OK, WA
20079GA, AR, TN, OR, VA, TX, MA, MO
20084FL, MI, PA, AL
20097MI, IL, OK, OR, LA, IDSub-prime mortgage crash
20107NY, VA, TX, PA, AL, WV
201132MS, AL, GA, VI (Virgin Islands), MD, MI, AS, TX, AR, IN, FL, TN, SC, NM, IA, NY, PA, LA, VT, NC
201225MS, FL, LA, TX, DE, KY, TN, IN, AL, GA, OH, PA, IL, MS, NC, MI, UT, SC. FL
201320MS, PA, OR, AL, MT, OK, TX, SC, NV, NM, NH, GA, TN
201422SC, CO, AK, AS (American Samoa), IL, AR, PA, RI, GA. IN, MA, MI, TX, NY, MS, WY, AL, MT, VA, LA, MO
201521AR, GA, WI, AL, NE, NV, HI, SC, NY, UT, MO, TN, KY, MA, IL, AR, AL, AK
201622DE, SC, HI, WI, MS, AL, OH, NV, MT, GA, NY, MO
201719NC, KY, CT, MO, GA, IL, TN, WY, NY, CA, OH, NH, PA
201818MD, KY, GA, NC, IL, GA, MS, UT, VA, LA, NY, MT, AR
201933AL, SC, OR, AR, TN, NC, WY, IN, KS, HI, WA, AL, IL, KY, HI, VI, VA, GA, LA, CA
202060MO, NE, FL, GA, LA, ID, TX, MP, AR, AK, KY, IL, AL, NJ, TN, MI, SD, MS, VA, CO, OH, SC, NM, WI, ND, AZ, OR, MD, PA, NVCovid-19 crash
202146MI, FL, AL, NV, GA, NM, PA, AZ, IN, OH, TX, IA, OR, CA, VA, IL, TX, TN, CA, NC, LA, OR, AZ, MS, SC, WV, WA, PA
202221FL, MS, AR, VA, MT, NY, KY, TN, SC, ME, NC, NM, MO, TX, GA, VT, PA
2023188TX, SC, MI, CA, ID, IL, OR, MD, MA, NM, AR, FL, KY, OH, TN, NC, LA, AR, CO, ME, MS, GA, WA, MI, OH, PA, VA, NJ, WI, NY, HI, NH, UT, IN, MT, SC, WV, IN, GU (Guam)The Great Cancellation of May 4, 2023
202435VA, AL, ME, LA, NC, MO, NY, SC, AZ, IL, NM, NV, WA, FL, TX, IN, WY, WA, KS, CA, MA, OH, NJ, AR, GA, CO, PA, VTAs of August 2024
US AM station cancelled licenses since 1992

A couple of things to note; there seems to be a two-year lag between any major economic downturn and a mass surrender of licenses. Covid-19 appears to be the exception. When the shutdowns came, clients canceled their advertising in mass causing a rapid end of already teetering businesses. In 1996, the FCC changed the rules on silent stations, limiting the time allowed to be silent to 12 months, after which the station license was canceled.

In 2023, the FCC performed a bit of housekeeping, canceling 188 AM expired station licenses some of which had been expired for decades. They performed the same thing for the FM band in October.

While every state and territory has at least one surrendered license, some states have more than average. Those tend to be mostly in the south; Alabama, Louisiana, Georgia, Florida, Mississippi, South Carolina, and Kentucky.

differed maintenance, AM transmitter site
differed maintenance, AM transmitter site

Too many AM stations these days are dead men walking. It takes effort to keep an AM station on the air. Maintenance of antenna arrays, particularly directional systems, is expensive. Selling advertising is much more difficult than it is for FM stations. Local programming is expensive. The land under an AM tower is often worth more than the license itself.

4 Tower antenna system, WBNR, Beacon, NY
4 Tower antenna system, WBNR, Beacon, NY

Land within certain city limits is a ripe target for developers. As more pressure mounts on station owners (taxes, zoning, etc) how long can they last before the inevitable happens?

Then there is the aging audience problem and in many smaller operations, the aging owners problem too.

The transition to digital modulation never happened. There are no AM stations running hybrid (MA1) HD radio. There are three AM stations that I know of that are running the all-digital (MA3) version of HD Radio.

In spite of those things, AM continues on.

Perhaps one reason; AM equipment is fairly simple in design and ease of use. Take away the electrical noise problem and it works well. AM radios are still ubiquitous in most houses, cars, hotel rooms, etc.

Many AM stations now have an FM translator, which is especially helpful if the AM station has to sign off at sunset or greatly reduce power. Some AM stations are simulcasting with full-power FM stations.

Crossed Field Antenna, Courtesy of Wikipedia
Crossed Field Antenna, Courtesy of Wikipedia

Are there any technological developments that would solve some of the issues facing AM broadcasters? More economical yet still efficient antenna designs that save space? A different modulation scheme that is still compatible with full-carrier AM and will work with older receivers (9K5R3E)?

Those question will likely remain unanswered. The FCC has shown no interest in allowing experimentation on the Medium Frequency band.

Generator Replacement

This Onan 30OEK propane-powered generator has been in service for 39 years at a transmitter site where the power goes out often. It has a lot of hours on it. The hour meter stopped working about 15 years ago, but the hours back then were 1097.

In addition, the main shaft seal started leaking oil about 10 years ago, creating an oily blowback mess every time the generator ran for more than a few hours. The block heater went bad, the battery charger overcharged then exploded the battery splashing sulfuric acid all over the housing and engine block.

The last power outage was the final one. It ran for a few hours then faulted. When the local engineer tried to restart it, it was never able to get to speed and was misfiring badly. Below appeared a large and spreading puddle of engine oil.

As this station is one of the major money makers for the owner, a replacement generator was obtained.

Cummins RS50 50 KW Propane powered generator

This is larger than the old generator. The good news; now the AC can be put on the generator to keep the room cool. In the past, the backup cooling fan was used when on generator power, which sucked dirt, bugs, and pollen into the room.

It will also have considerable headroom for any additional loads that may be installed in the future.

The generator in place and leveled

We had to enlarge the opening for the radiator and put in some steel angle for the lintels.

Exhaust piped outside with the radiator air

The first start run and load test went well. I ran it for about 30 minutes under full load, enough time to burn the paint off the exhaust manifold. Seems like a pretty solid unit. With the power conditions at this site, it will get a lot of use.