Quad Star Microphone Cable

Or Star Quad Microphone Cable, depending on who is making it.

Star Quad Microphone Cable diagram
Star Quad Microphone Cable Diagram

This has been around for quite a while, but many studio/broadcast engineers don’t understand it or don’t use it for some reason. Microphones and mic pickups produce relatively low signals when compared to line-level audio.  Most microphone preamps have a gain of +50 dB, which means any noise gets amplified and even small things can become major problems quickly.

Gepco MP1201 Quadstar Microphone Cable
Gepco MP1201 Quadstar Microphone Cable

Under general conditions, most balanced shield twisted pair (STP) audio cable such as the standard Belden 8450 is adequate for stationary microphone cable for short runs.  When the cable is not permanently fixed in place, as in hand-held microphones, microphones mounted on booms, or other nonfixed microphone applications, then a flexible cable must be used.  Star Quad cable has better noise specifications than standard flexible microphone cable.

The advantage of Star Quad cable for low-impedance microphones (150 ohms) is that the parallel twisted pairs significantly reduce inductive reactance.  In AC circuits, inductive reactance acts as a low pass filter, gradually rolling off as the frequency is increased.  This effect is cumulative, the longer the cable run, the more inductive reactance is added to the circuit.  The result is microphone audio can have smeared or ill defined high frequency audio.

parallel inductance formula
parallel inductance formula

Using two parallel twisted pairs is similar to parallel resistors when it dealing with inductive reactance, it halves the value.

In addition to reducing inductive reactance, the tighter twist found in Star Quad cables reduces the CMRR by about 20 dB.  The Star-Quad configuration keeps the conductors in the same relative position to each other as the cable is flexed and moved around.  All of this makes it superior to standard STP microphone cable.

Several companies manufacture Quad Star cables:

  • Belden: 1192A
  • Canare: L-4E6S
  • Gepco: MP1201
  • Mogami W2534
  • Cardas 4X24

The price of Star Quad cables runs about 40-60 cents per foot (more for the Belden, much more for Cardas) if purchased in bulk.  That is about the same range for two conductor mic cables.

As good as this cable is, I don’t think they had this in mind when they made it:

I wonder what the centripetal force on that cable is when the microphone is in full motion. Also, I’d bet that SM58 was none the worse for were after it’s crowd surfing moment.

Unbalanced to Balanced Audio

There is a large number of things that amazes me on an almost daily basis.  To wit: a local mom-and-pop radio station called me because they couldn’t get their computer program to work right.  I decided that I’d give them an hour or two, in exchange for my hourly labor rate, and see if I could fix their problem.  The issue at hand was a loud hum and other noise on the input source.  I knew before I even looked at it that the likely culprit was a ground loop.

It was worse than I imagined, with several unbalanced and balanced feeds improperly interconnected, line-level audio going to a microphone-level input, and so forth.  I explained to the guy about putting line level into a mic level input, something akin to plugging a 120-volt appliance into a 240-volt outlet.  Improperly terminated balanced audio nullifies all of the common mode noise rejection characteristics of the circuit.

In any case, there are several ways to go from balanced to unbalanced without too much difficulty.  The first way is to wire the shield and Lo together on the unbalanced connector.  This works well with older, transformer input/output gear, so long as the unbalanced cables are kept relatively short.

simple balanced to unbalanced audio connection
simple balanced to unbalanced audio connection

Most modern professional audio equipment has active balanced input/output interfaces, in which case the above circuit will unbalance the audio and decrease the CMRR (Common Mode Rejection Ratio), increasing the chance of noise, buzz, and so on getting into the audio. In this case, the CMRR is about 30 dB at 60 Hz.  Also, newer equipment with active balanced input/output, particularly some brands of sound cards will not like to have the Lo side grounded. In a few instances, this can actually damage the equipment.

Of course, one can go out and buy a Henry Match Box or something similar and be done with it.  I have found, however, the active components in such devices can sometimes fail, creating hum, distortion, buzz, or no audio at all.  Well-designed and manufactured passive components (transformers and resistors) will provide excellent performance with little chance of failure.  There are several methods of using transformers to go from balanced to unbalanced or vice versa.

Balanced to unbalanced audio using 1:1 transformer
Balanced to unbalanced audio using 1:1 transformer

Using a 600:600 ohm transformer is the most common.  Unbalanced audio impedance of consumer-grade electronics can vary anywhere from 270 to 470 ohms or more.  The 10,000-ohm resistor provides constant loading regardless of what the unbalanced impedance.   In this configuration, CMMR (Common-Mode Rejection Ratio) will be 55 dB at 60 Hz, but gradually decreases to about 30 dB for frequencies above 1 KHz.

Balanced to unbalanced audio using a 4:1 transformer
Balanced to unbalanced audio using a 4:1 transformer

A 600:10,000 ohm transformer will give better performance, as the CMMR will be 120 dB at 60 Hz and 80 dB at 3 KHz, remaining high across the entire audio bandwidth.   The line balancing will be far better for the high-impedance load.  This circuit will have about 12dB attenuation, so plan accordingly.

For best results, use high-quality transformers like Jensen, UTC, or even WE 111C (although they are huge) can be used.  I have found several places where these transformers can be “scrounged,” DATS cards on the old 7300 series Scientific Atlanta satellite receivers, old modules from PRE consoles, etc.  A simple audio “balun” can be constructed for little cost or effort and sound a whole lot better than doing it the wrong way.

A brief list, there are other types/manufacturers that will work also:

RatioJensenHammondUTC
1:1 (600:600)JT11E series804, 560GA20, A21, A43
4:1 (10K:600)JT10K series560NA35

Keep all unbalanced cable runs as short as possible.  In stereo circuits, phasing is critically important, so pay attention to how the transformer windings are connected.

A broadcast console makers perspective

I received a great email from Michael “Catfish” Dosch, console designer for Telos / Axia Audio Systems.  The email was sent in response to a comment I posted on the WEBE WICC Studio Build Out post.  I thought the email was very interesting and informative, presenting a perspective that most broadcast engineers do not often see or appreciate.  I asked Mike if I could use it as the basis for a blog post and he agreed.  I am not going to blockquote the entire thing, but here are the unedited email and pictures.

Quote:

“Ken said you had a concern about the ruggedness of our consoles as compared to the old PR&E boards. You might not know this, but I was with PR&E before joining Telos. In fact, I designed many of those old PR&E boards. I guess that makes me an old console designer. Ahem.

The Element design is more modern in construction and styling, but it is no less rugged than those old PR&E boards. In fact, you could stand on it if you wish. The top is a 1/4-inch machined aluminum plate supported by structural aluminum ribs on the backside. The chassis itself is made of custom extruded aluminum structural pieces and machined aluminum side panels. The flat sheet metal on the bottom is not structural, it’s only a cosmetic cover. You’ll see a lot of folded sheet metal in other consoles because it’s cheap and easy. But it’s not as rugged as the Element approach which is why we chose to go with a more complex and expensive mechanical design.

Telos Axia console cross section
Telos Axia console cross-section, Courtesy of Axia Audio / TLS corp

One very visible difference between Element and PR&E consoles is the use of Lexan on the front panels (PR&E would use aluminum or steel on the top panel). This might seem less rugged, but it is actually chosen because it is a more durable surface than painted and silkscreened metal. It is more scratch resistant and it is rear-printed so that the markings never wear out. Silkscreens would wear off under heavy use — particularly next to faders and monitor controls — and look horrible over time. These Lexan panels will look just as good after 15 years as they do now.

But Lexan for all of its durability has its own limitations. The edges can crack under abuse. This is why you see many older Wheatstone consoles (they have used Lexan overlays for many years) with cracks and tears at the very edges of the plastic. This is particularly troublesome in the fader slot. A frayed edge on a faders slot can cut your fingers. That is mighty unpleasant! So when we decided to use Lexan, we wanted to have all the benefits and none of the drawbacks.

So we designed a machined recess on each channel that allows the Lexan insert to have its outside edges protected by the aluminum. More obvious are the bezels around each button and even the fader slot. Look carefully and you will notice that all of the control bezel edges are above the lexan. The edges of the lexan are not exposed and therefore not prone to cracking, chipping, or splintering.

Axia Audio console control surface, courtesy of Axia Audio / TLS corp
Axia Audio console control surface, Courtesy of Axia Audio / TLS corp

In this drawing, you can see the panel without the lexan. The machined pocket to protect the outer edges of the Lexan, plus the raised edges of the button and fader bezels to protect the edges around the holes. These button guards are also designed to prevent accidental actuation of the buttons. And while the guards are designed to protect accidental actuation, they never hinder deliberate activation. Notice the guards at the sides of the ON/OFF buttons and not on the top and bottom. Even operators with long fingernails will have no problems with these controls. The small round keys are engaged with a light touch of the fleshy pad of the fingertip.

Yes, I think we built great consoles at PR&E. But Axia was a fresh start, a chance to raise the bar even higher, by retaining many of PR&E’s better attributes and improving upon some of the weaker areas. DIPswitch configuration has been replaced with the convenience of the web browser. Spill-prone motherboards and electronics have been eliminated from the control surface. Unreliable monitor pots have been replaced with optical rotary encoders rated for 5,000,000 rotations.

And you asked about the faders. This is a particularly important component in a broadcast console. PR&E used Penny & Giles faders for many years. We used their Series-4000 faders in the X-Class consoles (BMXIII, AMX, ABX and STX). This was their top-of-the-line fader at the time and performed beautifully… for a year or two. Then our clients started experiencing field failures at a very high rate. We worked with P&G on a return/rework/replace program that took years to clean up. Our clients were disappointed and we spent a fortune making things right. It was that experience that caused us to begin searching for alternatives.

The market for high-end faders is quite small. There are tons of consoles out there for live sound, home recording, etc., but these products are sensitive to costs and generally use very cheap faders. There just aren’t enough high-end recording consoles or broadcast consoles being built to attract a lot of fader vendors. After a lengthy search, I disqualified all but two fader companies: P&G and a Japanese firm by the name of Tokyo Ko-on Denpa (TKD). I assigned one of our engineers to create a set of environmental and life-cycle tests to see if the TKD faders could keep up with the P&G faders. We were all shocked by the results.

Out of 100 of each type tested in various environmental conditions and physically cycled for the accelerated equivalent of 10 years of heavy use, we had only one TKD fader failure, compared to more than half of the P&G Series 4000 faders! We defined “failure” as any deterioration to specifications or any discontinuities. All the failed units had discontinuities (audio dropouts). We were able to clean the failed TKD fader and it passed the retest. About half of the failed P&G units were cleaned and passed the retest. So in the end, the practical results were TKD 100% good and P&G 75% good. Not what I expected at all.

We then designed a TKD fader into the Radiomixer. We watched the customer support logs carefully for problems. Out of the first 1,000 console channels shipped, we saw one TKD fader failure during the first year. Warranty replacement of course. The failure rate did not increase with use as you would normally expect. We were seeing consoles with 3 or 4 or 5 years of heavy use with no fader problems at all. I have heard of 20 year old Radiomixers with original faders still working great.

One particularly elegant feature of the TKD fader used in Element is a side loaded wiper arm. This prevents liquids or other foreign matter from spilling into the fader slot and directly into the fader element. This feature alone is probably responsible for extending the useful life of the faders by a considerable amount. Of course, these can be disassembled and cleaned just like a professional fader from P&G, they just don’t need it so often.

Axia Audio TKD faders, courtesy of Axia Audio / TLS Corp
Axia Audio TKD faders, courtesy of Axia Audio / TLS Corp

Some have the misconception that if a fader is not P&G, it must be cheap. Actually, these are very expensive faders, about the same cost as P&G. But they are so well made, I think they’re worth every dollar. I know there are still some folks out there who remember P&G’s glory days when they made bullet-proof faders. I remember fondly those days as well. But in my experience, the TKD fader is superior to the equivalent P&G fader. We feel so confident, that we warrant all Axia consoles for 5 years, including all components….”

End Quote

That is a great explanation of what goes into one of these consoles right from the designer.  The pictures are courtesy of Axia Audio / Telos Corporation and special thanks to Mike for taking time out to give us a glimpse into the mind of a console manufacturer.

The Otari MTR10

I have come upon two of these units in very good shape:

Otari MTR10 1/4 inch 2 track reel to reel machine
Otari MTR10 1/4 inch 2 track reel to reel machine

Once upon a time, these were top of the line units.  I don’t know how much they cost new, but I’d imagine it is somewhere north of $3K in 1985.

Both machines work mechanically and electrically.  One machine has some slight grooves in the record and playback heads and looks a little more worn.    The other does not.  I will entertain all offers.   If a person would want the machine to be gone through and aligned, I’d charge three to four hundred dollars for my time.