Nautel Radio Coverage Tool

This is a Webinar video from Nautel about their Radio Coverage Tool:

Highlights of the Nautel RF tool kit:

  • Analyze the proposed transmitter location’s coverage
  • Tower heights can be adjusted
  • Antenna gains can be changed
  • Transmitter power levels
  • Includes Terrain data
  • Includes population within coverage areas
  • Frequency Range 30 Mhz to 3GHz
  • Useful for general broadcast or point-to-point systems

This can be a useful tool for those looking to gauge the realistic coverage of a station in terrain-challenged areas.  It can also be useful for studying STL paths, RPU coverage, etc.

One problem is the power levels and antennas are preset, with the minimum setting of 200 watts into a two-bay antenna.  These settings are too high for use when investigating a potential LPFM.  For that, Radio Mobile Online (which is the engine behind the Nautel RF tool kit) can be accessed directly via www.ve2dbe.com/rmonline.html.  Requires an account, which is very easy to set up.  For most users, FM broadcast band frequencies will not be available, however, 2 meter amateur frequencies (146 MHz) are the default, and for all practical purposes, will model coverage in the FM band (88 to 108 MHz) just fine.

By creating a hypothetical LP100 transmitter site, the coverages between the FCC 60 dBu contour and the actual coverage based on terrain can be compared.  This is the FCC 60 dBu coverage contour:

Example contour, LP-100 station
Example 60 dBu contour, LP-100 station

According to the US Census data, this station has a population coverage of; 30,721 in the 70 dBu or 3.162 mV/m contour, 92,574  in the 60 dBu or 1 mV/m contour, and 165,183 in the 50 dBu or 0.316 mV/m contour. Courtesy of REC Network.  The 60 dBu contour is considered the protected area licensed for use by the FCC.

Looking at a coverage terrain map, the picture changes somewhat:

Example coverage map, LP-100 station
Example coverage map, LP-100 station

This is based on predicted receiver location using terrain data; receiver antenna height 1 meter, 90% reliability, minimum signal level 10 µV (20 dBu,  yellow, very good car radios) and 31.62 µV (30 dBu, green, good radios and indoor reception).  Areas to the south and east of the transmitter are shaded by a large hill, thus they show low or no signal on the terrain based coverage map.  UN Population data indicates the yellow has 178,573 and the green area has 72,014 persons.  This map does not take into account co-channel and adjacent channel interference, which there is sure to be.

When comparing the two maps, one can see the coverage holes in the terrain map that are within the 60 dBu contour.  There may also be a slight difference in populations covered because the FCC map uses 2010 US Census data and the Radio Mobile Map uses UN population data.  For general planning purposes, the area shaded in green would be a safe bet on good reception, all other things being equal.

Since the LPFM stations are very limited in their ERP, finding a good transmitter site that will cover the desired area will be key to a successful operation.

The Continental D323C medium wave transmitter

I found a 1981 Continental Electronics equipment catalog at an old transmitter site. These finds are great if one is interested in history and looking at the way things used to be done.  This particular transmitter is a 2,000 KW (2,000,000 watt) medium wave unit:

Continental Electronics D323C, Circa 1981
Continental Electronics D323C, Circa 1981

I believe most units like this were destined for use by government broadcasters in either the middle east or Western Europe.  I know there were several 1,000 KW medium wave stations in West Germany at one time.   The Continental transmitter is basically two 1,000 KW units (323C) combined.  They used a modified version of Doherty modulation, that is called “Screen and Impedance,” which accurately describes how it works.  More information from the Continental Catalog can be found here: Continental D323C.  The tubes (or valves depending on where you are located) used in the D323C were 4CW25000A tetrodes as modulators and IPA the final was a pair of X2159, which is an impressive tube.

EIMAC X-2159 water cooled power tetrode
EIMAC X-2159 water-cooled power tetrode

The tube sat anode up.  The filament, grid, and screen connections are underneath.  Cooling water was pumped through the two connections on the top at about 130 gallons per minute depending on the plate dissipation.  With a 30° C rise, that equals about 96,000 BTU per minute.  The D323C had a dissipation of 400,000 watts for the carrier tube and 240,000 watts for the peak tube (640 KW total) under 100% modulation.  That equals about 2 million BTU per hour.  Notice the lifting hook, this tube weight in at 175 pounds.  Tube date sheet here.

Continental no longer makes medium wave transmitters, their closest high powered broadcast product now is the 418/419 and 420 HF (shortwave) transmitters.  The 420D does a wimpy 500 KW using a solid-state modulator section.

I remember in the early 1990’s when I was at the Harris plant in Quincy, they were working on a 1,000 KW solid state DX series AM transmitter for Saudi Arabia.  It had to be liquid cooled, which added another layer of complexity to an already complex system.

I don’t know if there is much call for 2 MW medium wave transmitters anymore as there are more efficient ways to reach remote populations and I can’t even imagine what the electric bill would be like.

Zonecasting; the Technical Details

I saw this item many weeks ago, but, had not had time to look at it until now.  Geo Broadcasting Solutions has filed Petition for Rule Making (RM-11659) based on a system that divides the coverage area of major stations into smaller zones allowing for ad targeting of specific audiences.  They have coined the term “Zone Casting” to describe the scheme. It is covered by two US-issued patents filed by Lazer Spots, LLC: 20120014370 and 20110065377.  After a look at these two patents, it seems there are three possible ways to accomplish this Zone Casting Scheme:

  1. In the first described method, the main transmitter is broadcasting area wide and all the zone transmitters are muted.  An inaudible signal is transmitted to all units, the main transmitter is then muted and the zone transmitters turn on and transmit localized content.  After the local information is transmitted, the zone transmitters mute and the main transmitter resumes broadcasting.
  2. In the second described method, the main transmitter and the zone transmitters are broadcasting area-wide information.  The main transmitter ceases broadcasting area-wide information and the zone transmitters begin broadcasting localized information.  At the end of the localized information, the main transmitter and zone transmitters transmit area-wide information.
  3. In the third describe method, the main transmitter and zone transmitters are broadcasting wide area information with “capture ratio pattern.”  The main transmitter initiates an alteration, temporarily becoming a zone transmitter.  The zone transmitters then transmit localized content.  After the localized content, the main transmitter becomes a main transmitter again.

All of the transmitters are linked to the studio via digital STL systems, and content for the zone transmitters is distributed via IP network.  The transmitter frequencies are synced with GPS, similar to FM on channel booster stations.  Method number three includes possibly switching the transmitter output to a lower gain and or lower height antenna.

Zone Broadcasting Conceptual Diagram
Zone Broadcasting Conceptual Diagram

Of the three methods, the first system will result in the fewest interference issues.  No matter which method is used, there will be interference issues between the zone transmitters and or the main transmitter where the signal strengths are equal and the audio is 180 degrees out of phase.  These can be moved around slightly by adding delay to the audio signal, but they will always be present.  More about Same Frequency Networks (SFN) and Synchronized FM signals can be found here.  While the zone transmitters are transmitting dissimilar localized information, standard capture effect rules apply.

The system has had limited testing in Salt Lake City, Utah (KDUT) and Avon Park, Florida (WWOJ), which according to the filing and comments, went well.

Geo-Broadcasting is applying to conduct a full test with WRMF in Palm Beach, FL.  The expected installation will include up to 22 zone transmitters.

Conceptually, tightly targeted advertising is not a bad idea.  Advertisers like it because they perceive a better return for their dollar.  The cost of such a system is not insignificant. Transmitter site leases run $1-2K per month, leased data lines, equipment, installation work, equipment shelters, etc will likely run several hundred thousand dollars or more.

If it gets approved by the FCC, it will be interesting to see how it works and whether or not the system is financially justifiable.