June 2010
« May   Jul »



Lightning Damage

It is that time of the year again, at least in the northern hemisphere, for thunderstorms.  I am a big proponent of grounding everything, there is simply no such thing as too much grounding.  I took a course when I was in the military given by Polyphaser in which grounding for lightning protection and EMP was emphasized.  It was very interesting in several respects.

One commonly held belief is that when lightning strikes an object, the ground immediately absorbs all of the charge.  That is not true in most cases due to ground resistances.  Eventually, the ground will absorb the charge but it can take several seconds to do this, especially with a big strike.  Equipment is damaged by current flow, therefore, every effort must be made to keep all of the equipment at the same potential, even if that potential is 10KV.  That is where a single point ground buss comes in.  Bonding every piece of equipment to a common ground buss ensures that no one device is at a lower potential while the charge dissipation is occurring.

The second misunderstanding about lightning is that it is DC voltage.  That is true, however, a lightning strike has an extremely fast rise time, on the order of 30 microseconds.  That makes it behave more like AC voltage around 10 KHz.  Therefore, ground buss wires need to have a minimum inductance.  Solid #2 wire is best, keeping it as straight as possible and using long sweeping turns where needed.  All bonds should be exothermically welded (CAD weld).

Ground system installed at WKZY, WHHZ and WDVH, Trenton Florida

Ground system installed at WKZY, WHHZ and WDVH-FM transmitter site in Trenton, Florida.  Central Florida is the lightning capital of the US.  Prior to doing this work, the Harris FM25K transmitter was knocked off the air at least once a month.  Since this was installed in 2005, they have had zero lightning related damage.  The ground rods are 20 feet long, driven down into the water table, spaced 20-30 feet apart.

All coax shields and metal conduits that come into the building should be bonded to the ground system where they leave the tower and where they enter the building.  At most tower sites, I install a ground ring around the outside of the building with rods every 20 feet or so.  From that ring, 5 to 6 radials outward 40 feet with ground rods every twenty feet works well.  I also install 5 to 6 radial out from the tower base with the same configuration.  The tower and building grounds are bonded together.  This is important because when the tower gets hit, the ground will quickly become electrically saturated.  If the building and the equipment is inside is at a different potential, current will begin to flow toward the lower potential, thus damaging gear.

All Coax, control and AC cables in and out of sensitive equipment should have ferrite toriods on them.  Transmitter manufactures normally supply these with new solid state transmitters, as MOSFETS are particularly sensitive to lightning damage.

Lightning damage to rack mounted equipment

This is a Potomac Instruments AM-19 directional antenna monitor.  It was damaged by a lightning strike two weeks ago on the WBNR tower in Beacon, NY.  The case arced to the rack it was mounted in.  This was a large strike, as several components in the phasor control circuit were also damaged.  The fact that this arced means that somehow the sample lines are not attached to the single point ground for this site, which needs to be corrected.

Insulated AM towers present special design problems when it comes to lightning protection.  Generally speaking, tower arc gaps should be set so there are side by side and there is no arcing on positive modulation peaks.  Depending on power levels, this can be anywhere from 1/2 inch to 2 inches.  Tower impedance also plays a roll in setting arc gaps.  The final link between the ATU and tower should have several turns in it.  The idea is to make that path a higher impedance path for the lightning, causing it to dissipate through the arc gaps.  Incoming transmission lines from the towers should be bonded to a copper buss bar at the entrance to the building.  All of this grounding needs to be tied to the RF ground at the base of the tower.

Arial phone cables can act like large lightning antennas for strokes several miles away.  It is very important that the cable shield and the cable termination device is bonded to the building ground buss.  I have seen installations where the TELCO tech pounds in a separate ground rod outside and connects the TELCO equipment to that.  That defeats the concept of single point grounds and should be fixed ASAP.

Electrical services entrances also can act like big lightning antennas.  Normally, pole mounted transformers will filter some of this energy out.  Internal electrical distribution systems can also add impedance, thus act as inadvertent filters for lightning.  In most mountain top transmitter sites, however, some type of power line surge protection is needed.

LEA series surge protector

Inside view of LEA surge suppressor

There are two types, series and parallel.  Parallel types are the least expensive and least intensive to install.  They are usually found mounted next to or on the service panel and fed with their own breakers.  They usually have some type of MOV or similar device that acts as a crowbar across the AC mains, conducting spikes to ground.  Series types go in between the service entrance and the main panel.  They include a large inductor designed to force spikes off into shunts.  A series type protector offers more complete protection than a parallel.

Be Sociable, Share!

2 comments to Lightning Damage

  • J. Aegerter

    Roger Block was the brains behind Polyphaser and designed some of the best devices I have ever seen. At first, I thought he was all about “snake-oil”, but after taking one of his “blocks” apart, I knew that he knew what he was doing. He had manufacturing problems while his factory was in Florida because of high humidity which affected the manufacturing process. However, he had a very good proving ground because of the high incidence of thunderstorm activity in this under water state. He finally said, he had enough, and moved his factory to Minden, NV, another state without an Income tax, and without humidity at all. He said his manufacturing processes greatly improved because of the dry Nevada climate, and it wasn’t long before a British outfit bought him out so he could retire. With respect to grounding, many electricians are completely clueless as to what grounding is supposed to be done as to lightning protection. I have seen green grounding conductors inside metallic conduits that were not bonded to the same uni-potential bus. The result is a worthless ground for lightning transients. I have also seen rigid conduit coming off towers that were not bonded to the tower at the point of exit from the tower. And another point that should be adhered to are tight connections either cad-welded (exo-thermic weld), brazed, or silver-soldered. Screw type clamps or connectors sometimes loosen up or corrode, but they are acceptable if they are inspected regularly. As far as power-line concerns, I personally prefer silicon-carbide disks as close to the demarcation point as possible, then series inductance with MOVs (metal oxide varistors) to boot. But most importantly is the single uni-potential buss where everything goes to a low-IMPEDANCE ground.

  • admin

    I had Roger Block’s book, The Grounds for EMP and Lightning protection, published by Polyphaser once upon a time, not I cannot find it. It was full of great information about Uffer Grounds and other such things. I know it’s around here somewhere…

Leave a Reply




You can use these HTML tags

<a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>


A pessimist sees the glass as half empty. An optimist sees the glass as half full. The engineer sees the glass as twice the size it needs to be.

Congress shall make no law respecting an establishment of religion, or prohibiting the free exercise thereof; or abridging the freedom of speech, or of the press; or the right of the people peaceably to assemble, and to petition the Government for a redress of grievances.
~1st amendment to the United States Constitution

Any society that would give up a little liberty to gain a little security will deserve neither and lose both.
~Benjamin Franklin

The individual has always had to struggle to keep from being overwhelmed by the tribe. To be your own man is hard business. If you try it, you will be lonely often, and sometimes frightened. But no price is too high to pay for the privilege of owning yourself.
~Rudyard Kipling

Everyone has the right to freedom of opinion and expression; this right includes the freedom to hold opinions without interference and to seek, receive and impart information and ideas through any media and regardless of frontiers
~Universal Declaration Of Human Rights, Article 19

...radio was discovered, and not invented, and that these frequencies and principles were always in existence long before man was aware of them. Therefore, no one owns them. They are there as free as sunlight, which is a higher frequency form of the same energy.
~Alan Weiner

Free counters!