Emergency transmitter replacement

Bad weather or other disasters can strike any time of year.  Around these parts, the most dangerous weather events occur from early spring through late summer.  In the past twenty years or so, we have had tornadoes, hurricanes, micro bursts, flooding events and so on.  All of that got me thinking about what would happen if a tower came down, or a transmitter building was destroyed by fire, wind, water, etc.

If past events can predict future performance, there would ensue a mad scramble to replace damaged equipment and or get some type of temporary antenna into service.  That is what happened in great City of North Adams, Massachusetts when the tower that held the cell carriers, the 911 dispatch, and the local FM radio station came down in an ice storm.  Fortunately, we had a single bay Shively antenna at the shop that we trimmed up and installed on a temporary pole with 200 watts TPO.

That will cover the city of license, provided there is electricity…

What if there where an event that was so devastating that the electrical power would not be restored for months?  Think about hurricane Maria in Puerto Rico.   After that event, the infrastructure was so devastated that there was not even the possibility of getting a fuel truck to deliver diesel for the emergency generators at the hospital in San Juan.  It can happen.

With that in mind, I began poking around and thinking about how I would get something back on the air.  In the face of massive disasters, AM and FM radio is still the most effective way to communicate with the general public.  Radios are still ubiquitous in homes, cars and businesses.

Bext 30 watt exciter
Bext 30 Watt FM exciter

In a short period of time I came up with a couple of solutions.  First, the frequency agile Bext exciter uses a single solid state rectifier feeding 24 volts to the power supply board.  The audio input includes a mono balanced line level input which can be fed by a computer sound card or some other simple source.

Bext 30 Watt FM exciter power supply
Bext 30 Watt FM exciter power supply

From there +12, +15 and +20 VDC are created to run various circuits.  The heat sink cooling fan is the only thing that runs on 120 VAC, which is old and I might replace with a 24 VDC unit.

Bext 30 Watt exciter power supply voltage
Bext 30 Watt exciter power supply voltage

The power output is about 22 watts, which is not bad.  That will certainly get out well enough from a high spot and provide good coverage when the power is out because all the other in band RF noise generators will be off.

6 volt, 435 Ah batteries
6 volt, 435 Ah batteries

Then I though about the deep cycle batteries in my barn.  These 6 volt, 435 Ah units have been around for a couple of years, but last I checked, they still held a charge.  Other deep cycle batteries from things like golf carts, fork lifts, campers, boats etc could also be pressed into service.  The point is, 24 VDC should not be impossible to create.

To keep a charge on the batteries, this solar panel will work:

225 Watt, 36 volt solar panel
225 Watt, 36 volt solar panel

This setup would require some sort of 24 volt DC charge controller, which I found on Amazon for less than $15.00 US.  This charge controller has selectable 24/12 VDC output and also has two USB ports which would be handy for charging hand held devices.

I measured the power draw while the exciter was running 20 watts into a dummy load, it draws 120 Watts.

The final part would be some sort of antenna with transmission line.  For this situation, a simple wire center fed dipole hung vertically would work well.  This can be fabricated with two pieces of copper wire and a few insulators.

Simple dipole antenna
Simple dipole antenna

The lengths of each wire can be calculated as follows:

Approximate length in feet: 234/f (MHz)

Approximate length in inches: 2808/ f (MHz)

Approximate length in cm: 7132/f (MHz)

For the FM band, maximum length of wires needed will be 32 inches (81 cm).  Insulators can be made of anything that does not conduct RF; PVC, ABS, dry wood, dry poly rope, etc.

Emergency FM band dipole
Emergency FM band dipole, cut to 88 MHz, lowest FM frequency

I recommend to cut the wires slightly long, then trim little bits off of each end while watching the reflected power meter on the exciter.  To keep RF from coming back down the shield of the transmission line, make 8-10 turns, 6-8 inches in diameter of coax as close to the antenna as possible and secure with a wire tie.  This will create a balun of sorts.

My emergency FM kit consists of:

  • Bext Frequency agile exciter
  • 30 feet, RG-8 coax with N male connector on one end
  • 4 ten foot RG-58 BNC male jumpers
  • 1 four foot LMR-400 N male jumper
  • Dipole antenna, cut long
  • Solar charge controller
  • Small basic tool kit; hand tools, plus DVM and soldering iron
  • Power cords, extension cords
  • 300 watt 12VDC to 120VAC inverter (pure sine wave)
  • 20 feet audio wire
  • Various audio connectors; spade lugs, XLR male and female, RCA, 1/4 TRS, etc
  • Various RF connectors; PL-259, N, BNC, etc
  • Bag of 12 inch wire ties
  • 3 rolls of 3M Scotch 88 electrical tape
  • 100 feet of 3/8 inch poly rope

This is all kept in a sturdy plastic storage bin from the Home Depot.  If needed, the batteries and solar panel are stored in the barn along with an assortment of other goodies.

Will it ever be needed?  Well,  I hope not.  However, it is much better to be prepared to restore services than wait for somebody to show up and help.  Sitting around complaining about the government does not relieve those people in need during and after a disaster.

GatesAir FLX-40 one year in

I was at the WEBE transmitter site recently and took the time to look over the transmitter we installed last year:

GatesAir FLX-40 transmitter, WEBE Bridgeport, CT
GatesAir FLX-40 transmitter, WEBE Bridgeport, CT

Overall, I would say that this transmitter has been very reliable.  We had to install a UPS for the exciter and HD Radio exporter, but that is not a big deal. During the first power outage, the exciter went dark first. It took longer for the transmitter controller board to lose power, in the interim the controller turned the transmitter power all the way up. When the generator came online 10 seconds later, the transmitter returned to operation at 41.5 KW. This, in turn, caused one of the other field engineers to freak out and nearly lose his mind (stay away from the brown acid, FYI).

I installed the UPS a few days later.

WEBE TPO 35.3 KW with HD Radio carriers on
WEBE TPO 35.3 KW with HD Radio carriers on

The transmitter power output is 35.3 KW, which is getting into the semi-serious range. The reflected power goes up when it gets warm out and goes down in colder weather.  Over the winter, it was running about 50 watts.  Even at 138 watts, that represents 0.004% reflected power. The TPO forward goes to the 6 bay, 1/2 wave spaced antenna side mounted, 470 feet (143 meters) AGL. The station covers pretty well.

WEBE Pump station
WEBE Pump station, pump is running 2/3 speed and fans are running at about 1/2 speed

Overall, I would give the liquid cooling system an A grade. The transmitter still dumps a fair amount of heat into the room from the RF combiners and PA power supplies. Most of the heat, however, ends up outdoors. Previously, we had two Bard 5-ton AC units running almost full-time. Now, only one AC unit cycles on and off except for the hottest days of the year. The outside temperature when this picture was taken was 81 degrees F (27.2 C).

Next year, we will have to send a sample of the coolant to be analyzed.

Gates FLX-40, WEBE Bridgeport, CT
Gates FLX-40, WEBE Bridgeport, CT

I have had good experiences with the GatesAir FLX/FAX series transmitters. I would recommend this to a friend.

Shipping Container transmitter site

Shipping container transmitter site from the early 1990's.
Shipping container transmitter site from the early 1990’s.

I do not particularly like these. I know, they are relatively inexpensive, easy to come by, easy to install, etc. However, a shipping container was not designed to house a transmitter, they have certain drawbacks. These are, in no particular order:

  • Air conditioning.  Using a traditional Bard-type equipment shelter HVAC unit requires cutting through a lot of fairly heavy gauge steel.  What’s more, the steel walls are uneven, requiring a filler.
  • They are by necessity, fairly narrow.  Arranging racks and transmitters along the length of the unit restricts access to either the front or the back of the equipment.  Meeting NEC clearance requirements for electrical panels, transfer switches, and disconnects can pose problems.
  • They are not very tall.  Mounting overhead equipment can be problematic as one does not want to drill through the top of the container.  Crosswise unistrut is one solution, but it lowers the overhead considerably.
  • Electrical work is slightly more dangerous.  Doing any kind of electrical work, troubleshooting, repairs, etc is a little more nerve-racking when everywhere around you is a metal surface at ground potential.
  • They are difficult to insulate against cold and heat.
  • The door-latching mechanisms bind, wear out or otherwise fail over time.

All of those things being said, I am now rebuilding a transmitter site in one of these shipping containers.

Inside view of shipping container transmitter
Inside view of shipping container transmitter site

Fortunately, the original electrical work was not bad.  The transmitter is a twenty-year-old BE FM10B, which will be retained as a backup.  The new transmitter is a Gates Air FAX-10.  We have installed several of these Gates Air transmitters in the last two years or so and they seem to be pretty solid units.  This is the second 10KW unit I have installed.

Gatesair FAX-10 transmitter in Middle Atlantic Rack

We decided to install the FAX-10 in a Middle Atlantic rack since we did not have a whole bunch of extra room for a separate transmitter rack.  The 1 5/8 inch coax switch is installed in the top of the transmitter rack along with a Tunwall TRC-1 switch control unit. The other rack will have the STL and all other ancillary gear.  My idea is to have nothing in between the door and the FM10B so it can be easily removed when that day comes.  Something, something about planning ahead since it will be likely myself removing the FM10B.

Radio is dead? Don’t tell these guys then…

WXHC in Homer, New York will never be listed on the NY Stock Exchange. Is that bad?

WXHC, Homer, New York
WXHC, Homer, New York

They don’t think so. A small class A FM station, one of many that signed on in the early 1990s as part of the 80-90 drop-ins (FCC docket 80-90, for those unfamiliar). Many of these stations did not fair too well and ended up being absorbed by larger stations and groups starting with the first wave of ownership deregulation in 1993.

WHXC has remained under the same ownership since it signed on in 1991. Eves Broadcasting is a family operation, employing maybe half a dozen people. Their studios and offices are on the third floor of the Bank of Niagara right in the center of town.  The facility is very nice.  Like any successful radio station, its focus is the community they serve. The format is “Oldies” but they also broadcast high school football, Syracuse sports and so on. They host a yearly Blue Grass festival on the village green.

WXHC air studio
WXHC air studio

The air studio has an Arrakis console and uses BSI Simian automation software. They have live DJs from 6 am to 6 pm, local news, weather, sports, etc.

WXHC production room console
WXHC production room console

The production room has a BE Spotmaster 8S200A console from 1978. Aside from needing some power supply capacitors, it still works relatively well.  However, as the owner’s son said; that thing belongs in a museum.

BE Spotmaster line input card
BE Spotmaster line input card

BE Spotmaster line input card. Probably can still get all these parts if we wanted to.

I forgot to take pictures of the transmitter site when I was there.  Next time.

We will be working on several projects for these folks, so I will keep you posted on the progress.