The GatesAir FLX-30

This is the second time I have installed one of these liquid-cooled transmitters. This time, it is for WVPS in Burlington, VT. WVPS is the flagship station for Vermont Public Radio. The station is a full class C, a rarity in the North East. The transmitter is located on Mount Mansfield giving it a HAAT of 2,717 feet (828 Meters), which is a good way up.

GatesAir FLX-30, WVPS Burlington, VT

This transmitter replaced the previous backup transmitter, a Harris Z16 unit from the early ’00s. There was nothing really wrong with this unit, it just was not a full power backup.

Harris Z16 transmitter

The new transmitter came in two pieces, which is typical for the 30 and 40 KW GatesAir liquid and air-cooled transmitters.

New Transmitter, being placed in Radio Transmitter room

For the cooling part of this installation, 1 1/2 inch type M copper pipe was used. This matches most of the other TV transmitters down the hall. In the same building are the transmitters for WCAX-TV, WPTZ-TV, WFFF-TV, and WVNY-TV.

FLX-30 Heat Exchanger, outside with all the others
Liquid-cooled transmitter piping, WCAX’s left pair, WVPS right pair
Air purge valve, sight glass, cross-connect and distribution manifold, above the transmitter

The highest point in the liquid-cooled system is the air purge valve and distribution manifold just above the transmitter. From here, everything slopes down to a few low points; the heat exchanger outside, the pump station, and the power blocks. This is to make it easier to drain if that ever needs to happen. There is also an air inlet valve to aid in draining.

GatesAir pump station

All of the cooling work is controlled by the pump station. The fans are connected to VFD modules, which control the flow of air through the Heat Exchanger.

Milwaukee Press Tool

All of this plumbing work was greatly sped along with the use of this Pro Press pipe press tool. This thing is great! No more sweating connections. Dry fit a section to make sure that it is all cut correctly, then go to work with this and it is done in a matter of seconds. Of course, there are no re-dos, so the dry fit procedure is a little more important.

System flush and pressure test

Prior to filling with Heat Transfer Fluid (50/50 water/antifreeze mix), the system was first pressure tested with air, then filled with clean water for a 12-hour flush. The water was drained out and the filter screen was cleaned, then it was filled with the appropriate Heat Transfer Fluid.

Testing into dummy load, TPO is 25,995 watts with -14 dBc HD Radio

Final system checks, remote control test, and HTF top off and the transmitter is ready to go pending the HD Radio installation.

WEZF and WVPS four bay three around panel antenna

Almost Eighteen Years

I do not know what the record is for the longest tube life, however, this particular tube lasted 17 years, 11 months, and 23 days.  That’s 157,596 hours.

I had written about this almost five years ago: https://www.engineeringradio.us/blog/2014/12/longest-tube-life/

The last one was last fall: https://www.engineeringradio.us/blog/2018/09/i-almost-hate-to-say-anything-but/

Eimac 4CX12000A power tube, serial number RHH108

This was installed new in a Broadcast Electronics FM20T transmitter which was placed online on June 6, 2001.  It lasted until May 28th, 2019 with almost no downtime.  Towards the end, the emissions started dropping off and we increased the filament voltage up to 10 volts.  When you have to increase the filament voltage, that really is the end for a tube.

The new tube was put in and I carefully marked out the date in the maintenance log.  The hour meter on the transmitter stopped working several years ago.

Prior to this, the longest tube life I’d experienced was an EEV 4CX35000C from an MW-50B transmitter RF section.  When that tube came out, it looked like it have been on fire.

The Broadcast Electronics STX-5 transmitter

Another install, this time a new BE product. I am familiar with the BE FM “C” series transmitter. Those are pretty solid units and we take care of many of them.

BE STX-5 LP transmitter
BE STX-5 LP transmitter

This new version of the transmitter looks like it has a little bit of Elenos in its DNA.  Perhaps I am wrong about that.

The STXe exciter is an all-purpose analog/digital unit that will do standard FM stereo, hybrid FM +HD radio, HD radio only, DRM+, or FM and DRM+.  I like that.  It gives the owner lots of options with regard to future planning.  Frankly, I would love to see some DRM+ testing done in the US.

We have actually installed a couple of “C” series transmitters with the STXe exciter as well.

BE FM2C with STXe exciter

The rest of the transmitter consists of four RF amps and an output combiner all in a short rack.  Frankly, if I were ordering one of these units, I’d order the taller rack.  Not that I am getting old or anything like that, but stooping over to program the date/time, frequency, and power output introduced a slight discomfort in my lower back.

BE STX-5 LP controller/exciter
BE STX-5 LP controller/exciter

Running into the antenna.  At 4.1 KW, 18 watts of reflected power is slightly high.  This antenna has always had a little bit of reflected power.

"The chicken coop, " WHUC and WZCR transmitter building
“The chicken coop,” WHUC and WZCR transmitter building

The building I installed this in is nicknamed “The Chicken Coop,” likely because it used to be an actual chicken coop.  I am not kidding.  The site was originally just the AM station (WHUC).  That station had a different transmitter building located some distance away which was fed with open transmission line.  This building was put in place sometime around 1969 when the FM station signed on as WHUC-FM (now WZCR).  It has seen better days, but we are working on fixing some of the issues with air conditioning and cleanliness.

Remains of open wire transmission line left over from orginal 1947 installation
Remains of open wire transmission line left over from original 1947 installation

The transmitter fired up without any issues and sounds much, much better than the QEI which it replaced.

Tired old QEI transmitter
Tired old QEI transmitter

The QEI transmitter had problems over the years, mostly burned-out resistors in the RF combiner network.  It has since been scrapped.

Emergency transmitter replacement

Bad weather or other disasters can strike any time of year.  Around these parts, the most dangerous weather events occur from early spring through late summer.  In the past twenty years or so, we have had tornadoes, hurricanes, micro bursts, flooding events and so on.  All of that got me thinking about what would happen if a tower came down, or a transmitter building was destroyed by fire, wind, water, etc.

If past events can predict future performance, there would ensue a mad scramble to replace damaged equipment and or get some type of temporary antenna into service.  That is what happened in great City of North Adams, Massachusetts when the tower that held the cell carriers, the 911 dispatch, and the local FM radio station came down in an ice storm.  Fortunately, we had a single bay Shively antenna at the shop that we trimmed up and installed on a temporary pole with 200 watts TPO.

That will cover the city of license, provided there is electricity…

What if there where an event that was so devastating that the electrical power would not be restored for months?  Think about hurricane Maria in Puerto Rico.   After that event, the infrastructure was so devastated that there was not even the possibility of getting a fuel truck to deliver diesel for the emergency generators at the hospital in San Juan.  It can happen.

With that in mind, I began poking around and thinking about how I would get something back on the air.  In the face of massive disasters, AM and FM radio is still the most effective way to communicate with the general public.  Radios are still ubiquitous in homes, cars and businesses.

Bext 30 watt exciter
Bext 30 Watt FM exciter

In a short period of time I came up with a couple of solutions.  First, the frequency agile Bext exciter uses a single solid state rectifier feeding 24 volts to the power supply board.  The audio input includes a mono balanced line level input which can be fed by a computer sound card or some other simple source.

Bext 30 Watt FM exciter power supply
Bext 30 Watt FM exciter power supply

From there +12, +15 and +20 VDC are created to run various circuits.  The heat sink cooling fan is the only thing that runs on 120 VAC, which is old and I might replace with a 24 VDC unit.

Bext 30 Watt exciter power supply voltage
Bext 30 Watt exciter power supply voltage

The power output is about 22 watts, which is not bad.  That will certainly get out well enough from a high spot and provide good coverage when the power is out because all the other in band RF noise generators will be off.

6 volt, 435 Ah batteries
6 volt, 435 Ah batteries

Then I though about the deep cycle batteries in my barn.  These 6 volt, 435 Ah units have been around for a couple of years, but last I checked, they still held a charge.  Other deep cycle batteries from things like golf carts, fork lifts, campers, boats etc could also be pressed into service.  The point is, 24 VDC should not be impossible to create.

To keep a charge on the batteries, this solar panel will work:

225 Watt, 36 volt solar panel
225 Watt, 36 volt solar panel

This setup would require some sort of 24 volt DC charge controller, which I found on Amazon for less than $15.00 US.  This charge controller has selectable 24/12 VDC output and also has two USB ports which would be handy for charging hand held devices.

I measured the power draw while the exciter was running 20 watts into a dummy load, it draws 120 Watts.

The final part would be some sort of antenna with transmission line.  For this situation, a simple wire center fed dipole hung vertically would work well.  This can be fabricated with two pieces of copper wire and a few insulators.

Simple dipole antenna
Simple dipole antenna

The lengths of each wire can be calculated as follows:

Approximate length in feet: 234/f (MHz)

Approximate length in inches: 2808/ f (MHz)

Approximate length in cm: 7132/f (MHz)

For the FM band, maximum length of wires needed will be 32 inches (81 cm).  Insulators can be made of anything that does not conduct RF; PVC, ABS, dry wood, dry poly rope, etc.

Emergency FM band dipole
Emergency FM band dipole, cut to 88 MHz, lowest FM frequency

I recommend to cut the wires slightly long, then trim little bits off of each end while watching the reflected power meter on the exciter.  To keep RF from coming back down the shield of the transmission line, make 8-10 turns, 6-8 inches in diameter of coax as close to the antenna as possible and secure with a wire tie.  This will create a balun of sorts.

My emergency FM kit consists of:

  • Bext Frequency agile exciter
  • 30 feet, RG-8 coax with N male connector on one end
  • 4 ten foot RG-58 BNC male jumpers
  • 1 four foot LMR-400 N male jumper
  • Dipole antenna, cut long
  • Solar charge controller
  • Small basic tool kit; hand tools, plus DVM and soldering iron
  • Power cords, extension cords
  • 300 watt 12VDC to 120VAC inverter (pure sine wave)
  • 20 feet audio wire
  • Various audio connectors; spade lugs, XLR male and female, RCA, 1/4 TRS, etc
  • Various RF connectors; PL-259, N, BNC, etc
  • Bag of 12 inch wire ties
  • 3 rolls of 3M Scotch 88 electrical tape
  • 100 feet of 3/8 inch poly rope

This is all kept in a sturdy plastic storage bin from the Home Depot.  If needed, the batteries and solar panel are stored in the barn along with an assortment of other goodies.

Will it ever be needed?  Well,  I hope not.  However, it is much better to be prepared to restore services than wait for somebody to show up and help.  Sitting around complaining about the government does not relieve those people in need during and after a disaster.