Status of AM revitalization

It has been about five years since the AM revitalization initiative was first proposed by the FCC and about five years since the first rules changes took place.  Those rules changes included:

  1.  FM translators for AM stations
  2. Allowing stations to use MDCL (Modulation Dependent Carrier Level)
  3. Changing some of the antenna radiation efficiencies requirements
  4. Changing some of the allowable interference towards other stations requirements
  5. Loosening some rules regarding proofs, MOM, nighttime coverage over the city of license, etc

Things that were not addressed:

  1. Receiver quality and technical advances
  2. Ambient noise levels on Medium Frequency (among other) bands
  3. HD Radio or any other digital modulation scheme

Things that were discussed then changed subsequently as a separate initiative:

  1. The main studio rule, which was eliminated for all broadcasting stations

What has been the net effect of these changes?  Has any of this revitalized AM radio?  The net effect has been approximately more of the same.  There have been many stations that have applied for and received licenses for FM translators.  Those stations, in most cases that I am aware of, receive some benefit of extra revenue because of this.  Stations with carrier power levels of 10-50 KW have taken advantage of MDCL technology to save some money on their electric bill.  Nothing wrong with that.

For stations that use a directional antenna, proofs of performance and other DA matters with the FCC have become slightly easier.  Medium Frequency (MF) directional antennas are very large, require a lot of land, are expensive to build, license, and maintain.  I know of several stations which have downgraded from a class B station with a directional antenna to a class D station with a single tower and greatly reduced nighttime power.   Those downgraded stations certainly benefit from an FM translator.

I have heard from more than one AM station owner who says after four years, they are going to “turn in their AM license and just keep the FM.”  I am sure that they are not informed regarding translator rules.  Perhaps, however, the FCC will allow this in the future; a sort of back-door commercial low-power FM station classification.

The AM band zenith occurred in November of 1991 when there were 4990 licensed AM stations in the United States.  As of June 30, 2018, the total stands at 4633.  That is a decline of 357 stations.  There are currently 90 AM stations listed as silent.  That represents a decline of approximately 9 percent or less than 1/2 of one percent per year.

The last number of AM stations actually transmitting HD Radio that I found was approximately 110, which differs from the iBiquity (and FCC) number of 240.  The FCC database includes stations that are currently dark or stations that were transmitting HD Radio at one time but have since turned it off.  Either way, it is a small percentage of licensed stations.  As of this time, AM HD Radio appears to be a non-starter.  In other parts of the world, Medium Frequency DRM seems to be doing well.  The difference seems to be that the DRM operation is all digital and the digital carriers have a much higher power level than that of the hybrid AM HD Radio being used here.

Of those 4633 standard broadcast stations, approximately 260 belong to iHeart radio, Cumulus owns approximately 120 and Townsquare owns approximately 80.   That accounts for 460 stations.  The remaining 4000 or so stations currently on the air are owned by medium-sized corporations or individual owners.  The reason for the distinction; I have noticed that large corporate owners tend to concentrate resources and effort on those licenses that will make the best return, e.g. FM stations.  Of course, there are a few exceptions to that trend, often in major markets.

Of those 4000 or so remaining AM stations, most seem to be treading water.  They are making enough money to stay on the air.  There are a few AM stations that are doing remarkably well.  Those are the ones with primarily local content.  The vast majority of AM stations are running some type of syndicated talk.  News/talk and sports radio are the two most common formats.  Conservative news/talk seems to be the bread and butter.  Liberal news talk has been tried, but none have succeeded.

Last May, the Supreme Court overturned the Professional and Amateur Sports Protection Act of 1992.  That federal law prevented gambling on outcomes of professional and college sports games.  With the overturn of that rule, individual states can now legalize sports betting.  It will be interesting to see what states allow legalized sports gambling and whether that has any effect on the various sports radio formats.  I can see where individuals and odds makers may want to get good inside information regarding team dynamics and so on.  The sports network that can furnish such information may be in a good position to carve out a niche.

Music can and does sound good on AM when it is done correctly.  There is a great misconception that AM fidelity is poor.  That is not necessarily so.  There are a good many AM receivers these days that have much better bandwidth than the previous generation receivers.  I am noticing that car radios in particular sound much better.  Yes, there are still problems with electrical noise and nighttime interference.  There are still technological improvements that can be made for analog AM on the receiver side.

In summary; the revitalization efforts have benefited some AM stations in some areas.  The truth is, that many AM stations have been let go for so long that there is no saving them.  Other AM stations that are still viable are making a go of it.  In nautical terms; there is six feet of water in the hold, the pumps are working and the ship is not sinking… for now.

WKIP

This was the radio station that I listened to (or rather, my parents listened to) when I was a very young kid.  From this source, things like school closings, weather, lunar landings, news, sports and traffic could be heard.  At one point, there was a guy called the “Traffic Hawk,” (real name Don Foster) who flew in a Cessna 172 east and west over main street in Poughkeepsie advising drivers of any slow downs in the area.  That’s right, Poughkeepsie, New York, population 30,000, had it’s own eye in the sky, broadcasting live from the aircraft overhead.  Actually, I think he also flew up and down South Road (US Route 9) in the vicinity of the IBM plant, which employed quite a few people in those days.

There was also a guy who tried to break the Guinness Book of World Records by staying awake the longest, this happened several times.

For me, it was the school closings.  I hated school with an absolute passion.  Everyday, I would ride the school bus and say a little prayer; “…please God, make it today.  Make the boiler stop working, or the electricity go out.  Make the kitchen catch on fire or the roof cave in.  You are a great and mighty God and I don’t ask for much.  Please destroy my school today.”  Alas, God did not seem interested in this.

Anyway, back to the topic at hand.

WKIP first signed on in 1940 with the studios and transmitter located at The Nelson House, 42 Market Street, Poughkeepsie.  That building is long gone and the location appears to be the parking lot for the Dutchess County Office building.  Being neighbors with some influential guy from Hyde Park made for a nice dedication speech:

It signed on with a power of 250 watts on 1,420 KC on June 6th, 1940. Soon thereafter, it changed frequency to 1,450 KC as a part of the AM band shift brought about by NARBA.

Over the years, the station went through several ownership changes. The first major technical change came in 1961, when the station transmitter site moved to its current location, then called Van Wagoner Road, now Tucker Drive. The station increased power to 1,000 Watts and installed a directional antenna for daytime use.  It is one of those rare nighttime non-directional, daytime directional stations.

The directional antenna consists of two towers; tower one is 180 degrees tall (103.4 Meters or 340 feet) with 35 degrees of top loading.  That is used for both the day and nighttime array.  Tower two is 85 degrees tall (48.8 Meters or 160 feet) and is used only for the daytime array.  This pushes the major lobe of radiation towards the north.  I don’t know the reasoning behind that, but somebody spends a good amount of money to make it so.

Here is an air check from the early 1980s.  Weather on that day was “Sunny, cloudy, whatever… take your pick.”

Good old Steve Diner.

Today, the station looks like this:

The 1961 WKIP transmitter building with tower
The 1961 WKIP transmitter building with tower

When I was growing up, my cousins lived within walking distance of this. We used to come over and throw rocks at the tower when the station was unmanned on Saturdays and Sundays. At least, I think it was unmanned because no one ever came out and yelled at us.

WKIP backup transmitter, phasor and main transmitter
WKIP backup transmitter, phasor and main transmitter

Mid-1980s MW-1A still runs. The BE AM1A is the main transmitter. The phasor is the Original 1960s Gates Phasor.

This video shows how the studios used to look before they were rebuilt by Clear Channel Circa 2002 or so. At about the 2:02 mark, you will see the room pictured above as it looked in 1990.

The space between the video above and the picture below looked bad with nothing in it. It looks better now.

WKIP clock
WKIP clock

That clock is a collector’s item and belongs in a museum.

AM station downgrade

I have been working on another formerly directional class B AM station, this one is in Rutland, VT.  WSYB has been on the air since 1931 with the same call letters serving the east-central part of Vermont.  In 1931, it was operating on 1500 kc with 100 watts of power.  In March 1941 it moved to 1490 kc with 250 watts before settling, a few months later, on 1380 with 1,000 watts, directional night time protecting CKPC in Brantford, Ontario, Canada.

The transmitter site was first located at 80 West Street (now known as BUS US 4), in Rutland.  It was moved to its current Dorr Drive (Formerly Creek Road) location in 1938, when the station was requesting a power upgrade to 250 watts.  Whilst cleaning out the old transmitter building, a copy of an operating log, dated December 7, 1945 was discovered in the attic above the transmitter room:

WSYB transmitter log, 1945

Back from the time when readings were required every 30 minutes.

In 1956, WSYB was allowed 5,000 watts daytime non-directional with 1,000 watts nighttime directional.

At some point in the early 1990s, the original towers were replaced with solid-leg Pirod towers, each 195 feet tall.

After that, things went the way things do; AM steadily declined in favor of FM, local programming was mostly replaced by syndicated satellite stuff, there were several transfers of ownership, etc.

A translator on 100.1 MHz was added in 2016; the two-bay Shively antenna was installed at the top of the South West tower.   There is local programming on the station from 6 am to noon on weekdays.  There may also be some gardening shows and other such programming on weekends.

The current owner has decided like they have done in other markets, that AM directional antenna systems are a maintenance nightmare, the risk of FCC sanctions are high for an out-of-tolerance antenna array, and the ratings and income from the station do not justify the risk/cost.  Thus, non-directional nighttime operation was applied for and granted.  The station is now a Class D with 25 ass-kickin’ nighttime watts.

WSYB had a two-tower nighttime antenna system.  The tower closest to the building (SW) was also the daytime, non-directional tower and it now holds the FM translator antenna and STL antenna.  Thus, it was decided to ground that tower and keep those antennas in service.  The far tower (NE), which was the second tower of the nighttime array would become the AM antenna.  The nighttime ATU was built for less than 1,000 watts of input power, so several components needed to be upgraded for 5,000-watt operation.

WSYB rebuilt ATU
WSYB rebuilt ATU

I had available these nice vacuum capacitors that came out of another decommissioned antenna system.  The vacuum capacitors are great because the voltage/current ratings are much higher than the mica capacitors that were in the circuit before.  You can see black goop where one of the Sangamo mica capacitors on the input leg failed several years ago.  These vacuum capacitors are rated at 15 KV and the current rating at 1.38 MHz is probably in the 70-80 amp range.  I had to move the base current meter from the former daytime (SW) tower out to the NE tower.  The day-night switch was taken out of the circuit.  The transmission line to the far tower was replaced with 7/8 inch foam dielectric cable.  A slight touch-up of the coil on the input leg of the T network was all that was required to bring it into tune.

The electric lines to the tower have been temporarily disconnected.  As soon as they are reconnected, I will vacuum out all the mouse crap and other debris.  The ATU building also needs some work sealing it up against the elements.

The tower base impedance is 75 ohms, +j95 making the base current 8.6 amps daytime and 0.58 amps night time.

WSYB radiating element
WSYB radiating element

For me, the magic of radio exists at that boundary between the real objects (towers and antennas) and the ether.  The transference of electrical voltages and currents into the magnetosphere is something that still fascinates me to this day.  Coupling a 5,000-watt medium wave transmitter to a tower and watching it work is something that I will never grow tired of.

The Energy Onix Pulsar transmitter

Engineering Radio: The Oh Dear God Edition.

I have been tasked with fixing one of these glorious contraptions. Aside from the usual Energy Onix quirks; design changes not reflected in the schematic diagram and a company that no longer exists, it seems to fairly simple machine. Unfortunately, it has spent its life in less-than-ideal operating conditions.

Energy Onix Pulsar 1000 in the wild. Excuse the potato quality photo
Energy Onix Pulsar 1000 in the wild. Excuse the potato-quality photo

Upon arrival, it was dead in the water.  Found copious mouse droppings, dirt, and other detritus within and without the transmitter.  Repaired the broken start/stop switches, fixed the RF drive detector, replaced the power supply capacitors, and now at least the unit runs.  The problem now is the power control is unstable.  The unit comes up at full power when it is first switched on, then it drops back to 40 watts, then after it warms up more goes to about 400 watts and the audio sounds distorted.  This all points towards some type of thermal issue with one of the power control op-amps or another composite device.

After studying the not-always-accurate schematic diagrams, the source of the problem seems to be the carrier-level control circuit.  This is based around a Fairchild RC4200AN (U10 on the Audio/PDM driver board) which is an analog multiplier chip.   That chip sets the level of the PDM audio output which is fed into the PDM integrator circuit.  Of course, that chip is no longer manufactured.  I can order one from China on eBay and perhaps that will work out okay.  This all brings to mind the life cycle of solid-state components.  One problem with the new technology; most solid-state components have a short production life, especially things like multiplier chips.  Transmitters are generally expected to last 15-20 years in primary service.  Thus, transmitter manufacturers need to use chips that will not become obsolete (good luck with that), or purchase and maintain a large stock of spare parts.

In the meantime, the chip is on its way from China.  Truth be told, this fellow would be better off with a new transmitter.