The Gibson Bass Guitar

Back in the days of my early adulthood, I found myself in various situations that were neither familiar nor followed any known script.  Thankfully, I seemed to manage those things without getting suckered too badly and/or causing too much trouble for myself or others.  Thus, when I was living in a barracks building and one of the other guys asked me to loan him $100.00 until payday, I deferred.  Lending money to anyone is fraught with danger and in 1983 or 1984, $100.00 was worth quite a bit more than it is today, especially for a junior enlisted guy like I was at the time.  A few hours later, the same fellow approached with a different arrangement; I would lend him $100.00 and he in turn would give me his Bass Guitar to hold onto until he paid me back.  I looked at the rather nice Gibson Grabber bass complete with road case and said okay.

Now, this guy took that $100.00 and for some reason that was never clear, stole his roommate’s car that night and went UA.  He was arrested a few days later some distance away near the border to another state.  He never returned to me my $100.00 and I never returned to him his guitar.

1978 Gibson Grabber Bass Guitar with original hard road case
1978 Gibson Grabber Bass Guitar with original hard road case

Over the ensuing years, I have picked this instrument up and fooled around with it from time to time.  I even learned how to plunk along with some easier songs like Louie Louie.  It was never serious and for the last twenty or so years, it sat unused in the back of a closet.  A few days ago, while cleaning up, I noticed the road case sitting there.  A little bit of research reveals that it was made in 1978 at the Gibson Guitar factory in Kalamazoo, MI.  As it is in good condition with the original case, appears to be worth a bit of money.

I took some time and cleaned it up.  One of the pots was a little scratchy, so I cleaned it with a bit of Deoxit.  I took the bridge apart and cleaned it, removed the pickguard and pickups, and cleaned those thoroughly.

Gibson Grabber on stand
Gibson Grabber on stand

Being the curious type, I started fooling around with it again.  I then found a few Youtube videos on how to play bass.  I watched those along with some other learning tools.  I began to practice scales.  This turns out to be kind of fun.  I do remember how to read music, although I would need to brush up on this skill somewhat if I want to become an actual bass player.  I purchased a small Fender Amp, a scale chart, and a clip-on tuner and we are off to the races.  I wonder how the electric bass translates to a stand-up bass.  I could forgo the Rock ‘n Roll experience completely, but if I get good enough, I’d really like to play in a Jazz band.  A boy can dream…

Happy New Year!

After a bit of reflection and a few good conversations over the New Year’s Holiday, I decided that I should continue my work on this blog.  I would like to thank all those that have stuck by and waited.  I have received numerous emails and messages offline, all of which have been read and appreciated.

Since the abrupt stoppage last July, which was absolutely necessary for me, many things have happened within the business.  Fortunately, during the hiatus, I was still taking pictures.  After sorting through them, here are a few interesting things that happened:

At one of our client’s AM transmitter sites in Albany, NY a 2.6 Million Watt solar system has been installed.

WROW-AM Steel mounting poles on antenna array field
WROW-AM Steel mounting poles on antenna array field

This project required many steel mounting posts to be driven into the ground around the AM towers.  I don’t even know how many, but I would hazard a guess of over three hundred.  Each one of those mounting posts was hand-dug down a depth of 6-10 inches to look for ground wires.  Where ever a ground wire was found, it was moved out of the way before the post was set.

WROW-AM ground wire moved out of way
WROW-AM ground wire moved out of way

Basically, the solar array covers about 1/2 of the antenna array field.  All of the steel mounting hardware is tied into the ground system, making, what I am sure is a pretty large above-ground counterpoise.

WROW-AM solar panel mounting hardware
WROW-AM solar panel mounting hardware

View from the south looking north:

Solar Array installed on WROW antenna array, Glenmont, NY
Solar Array installed on WROW antenna array, Glenmont, NY

View from the north, outside of the transmitter building, looking south:

Solar Array installed on WROW antenna array, Glenmont, NY

Power company interface and disconnect:

Solar Array utility company disconnect, Glenmont, NY
Solar Array utility company disconnect, Glenmont, NY

The utility company had to upgrade the transmission lines to the nearest substation to handle the additional power produced by the solar system. All in all, it was a fun project to watch happen.

At a certain studio building, which is over 150 years old, the roof needed to be replaced.  This required that the 3.2-meter satellite dish and non-penetrating roof mount be moved out of the way while that section of the roof was worked on.

3.2 meter satellite dish

Dish was ready to move, and all of the concrete ballast was removed and taken down from the roof.  The roofing contractors constructed a  caddy and the entire dish and mount were slid forward onto the area in front of it.  Since the front part of the roof was not reinforced to hold up the satellite dish, we did not ballast the mount and the XDS receivers ran off of the streaming audio for a couple of days until the dish was put back in its original position.

3.2 meter satellite dish ready to move
3.2 meter satellite dish ready to move

A couple of other studio projects have been underway in various places.  Pictures to follow…

One of our clients sold their radio stations to another one of our clients.

There has also been a bankruptcy of a major radio company here in the good ol’ US of A.  Something that was not unexpected, however, the ramifications of which are still being decided on in various board rooms.  One of the issues as contractors is whether or not we will get paid for our work.  All things considered, it could be much worse.

Learned a valuable lesson about mice chewed wires on generator battery chargers.  I noticed that the battery charger seemed to be dead, therefore, I reached down to make sure the AC plug was in all the way.  A loud pop and flash followed and this was the result:

Arc burns, right hand
Arc burns, right hand

My hand felt a bit warm for a while.  The fourth digit suffered some minor burns.  There is at least one guy I know that would be threatening a lawsuit right now.  Me, not so much…  All of the high voltage stuff we work on; power supplies that can go to 25 KV, and a simple 120 VAC plug is the thing that gets me.

The return of the rotary phase maker.

Rotary phase maker, Kay Industries T-10000-A

Mechanically derived 3rd phase used when the old tube type transmitter cannot be converted to single phase service.

Those are just a few of the things I have been working on.  I will generate some posts on current projects underway.  Those projects include a 2 KW FM transmitter installation, another studio project, repair work on a Harris Z16HD transmitter, etc

It is good to be back!

The GatesAir FLX-40 transmitter

The GatesAir FLX-40 transmitter is my first liquid cooled transmitter installation.  Previously, I have installed an air cooled Nautel NV-40, a V-40 and a couple of BE FM-35T/20T units.  The WEBE transmitter site in Bridgeport, Connecticut is an interesting facility.

Smoke Stack, Bridgeport Energy, Bridgeport, CT
Smoke Stack, Bridgeport Energy, Bridgeport, CT

This coal fired power plant smoke stack which currently holds up the six bay, half wave spaced Shively antenna.  The old BE FM35A transmitters are getting little bit long in the tooth.  Thus, we picked one to scrap, the other will be kept for backup service.

Scraping 34 year old BE FM30A transmitter

We saved a whole bunch of parts to keep the other FM35A on the air in backup service.

BE FM30A power supply cabinet

The power supply cabinet with that 500 pound plate transformer was the last to go.

On second thought, that plate supply transformer is a good spare to have
On second thought, that plate supply transformer is a good spare to have

The FLX-40 came on a large truck.  Fortunately, we were able to open the side gate at the power plant and get the truck to the front door of the transmitter building easily.  The transmitter consists of two large cabinets, each with two 10 kilowatt power blocks.  There is also a pump station and an outdoor heat exchanger.

FLX-40 cabinet two off the truck
FLX-40 cabinet two off the truck
FLX-40 cabinet one
FLX-40 cabinet one
FLX-40 in place, cabinets bolted together
FLX-40 in place, cabinets bolted together

This transmitter design is based on the Harris digital TV transmitters.

FLX-40 pump station
FLX-40 pump station

The pump station and heat exchanger are the same systems used for TV transmitters.  Liquid cooled units require a bit more planning on the installation end.  The coolant piping should have a high spot from which everything else slopes down hill.

Send and return coolant lines
Send and return coolant lines

I put a 1/4 to 12 inch pitch on everything.  Of course, there are several low points, the heat exchanger, pump station and bottom power blocks.

Holding steady at 18 PSI for 24 hours
Holding steady at 16 PSI for 24 hours

After assembling the cooling system, we pressure tested it for 24 hours.

Installation debris in the coolant line strainer
Installation debris in the coolant line strainer

Following that, we flushed the system with distilled water for several hours before we filled it with 40/60 glycol/water mix. Record low temperature in Bridgeport is -7 F (-22 C), thus a 40/60 mix will give protection down to -15 F (-26 C). The more water in the coolant, the better heat transfer capacity it has.

At the highest point in the system, there is a sight glass and an air purge valve
At the highest point in the system, there is a sight glass and an air purge valve

The pump station is controlled by the transmitter, which speeds up the pumps according to how much heat needs to be moved. In turn, the pump station control the fan speed on the heat exchanger outside.

FLX-40 pump station on line
FLX-40 pump station on line

The pump station runs with one motor most of the time. The other pump motor will run in the event of failure or if there is not enough flow through the power blocks. Each of the four power blocks has a flow rate meter on the return line.

Heat Exchanger Fan motor controllers, Variable Frequency Drive modules
Heat Exchanger Fan motor controllers, Variable Frequency Drive modules

Variable Frequency Drive (VFD) fan motor controllers show them running at half speed.

50 KW heat exhanger
50 KW heat exhanger

GatesAir 50 KW heat exchanger mounted on concrete pad behind the building. Air flows out from the motor side.

One of several shipping containers with modules and other parts for the FLX-40
One of several shipping containers with modules and other parts for the FLX-40

As with most things, some assembly required.  The RF modules needed to be placed in the power blocks according to their serial numbers on the test data sheet.  This insures that the information on the test data sheet matches the installed transmitter configuration.  The power combiner between the two cabinets as well as the reject load and directional coupler all need to be installed.

RF modules with large aluminium heat spreaders.   Coolant flows through each module.

FLX-40 power amp module
FLX-40 power amp module
WEBE, Bridgeport, CT GatesAir FLX-40 on the air for the first time
WEBE, Bridgeport, CT GatesAir FLX-40 on the air for the first time

On the air!

FLX-40 into the antenna
FLX-40 into the antenna

We ran the transmitter for several hours into the antenna yesterday afternoon. The coolant system is still purging air, so we periodically needed to add water/antifreeze to the pump station to keep the pressure between 12-18 PSI. Eventually, the TPO will be 34 KW with the HD carrier(s).

All in all, I would say that this was a fun project. The liquid cooled transmitter had a few extra steps during the installation process, but not too difficult.

VOA Site B, Greenville, NC

I took a brief vacation last week along the coast of North Carolina. It was relaxing and fun to be sure. I was also aware of and slightly curious about the Voice Of America shortwave site, a slight distance inland in Grimesland, NC.  Thus, I made arrangements to visit the facility on my way home.  Chief Engineer, Macon Dail, was gracious enough to give us the guided tour.  The facility is an engineering marvel.  The scale and complexity are enormous.  The entire facility is scrupulously maintained.  Many of the transmitters and other equipment have been upgraded to make them more functional.   I tried to take meaningful pictures, but in many cases, they simply do not do justice.

Edward R Murrow Transmitting Facility, (VOA Greenville Site B) Grimesland, North Carolina

Officially known as the Edward R Murrow Transmitting Station of the International Broadcasting Bureau, VOA Site B was constructed in 1961.  Six of the eight shortwave transmitters are original to the construction of the building.  The other two (BBC SK55 and AEG S4005) were added in 1986.  All of the dipole curtain arrays, rhombics, transmission line, and antenna switching matrices are also original.  A few brief statistics about this site:

  • Land area is 2,715 acres (1099 hectares).
  • Over twenty-six miles (forty-two kilometers) of 300-ohm open transmission line rated at 500 KW.
  • Sixteen dipole curtain arrays, average antenna gain 17 dBi.
  • Twenty rhombic antennas, antenna gain 15 dBi.
  • Two of the dipole curtain arrays can slew azimuth and take off angle.
  • Three Continental Electronics 420A 500 KW Doherty modulated transmitters.
  • Three General Electric 4BT250A1 250 KW high-level plate modulated transmitters.
  • One Brown Boveri Company (BBC) SK55C3 500 KW PSM transmitter.
  • One AEG Telefunken S4005 500 KW PDM transmitter.
  • The antenna switch matrix connects any of the eight transmitters to any of the thirty-six antennas

While we were there, both of the newer transmitters were on the air, running at 250 KW.  The GE transmitters are used as needed and the Continentals are rarely used due to age, difficulty to tune, change frequencies, and gross power inefficiency.

The station staff has, out of necessity, fabricated some very cool upgrades to the transmitters and facility.  The first of which is the alarm annunciator, which is based on a Star Trek (Original Series) sound scheme.  Once or twice I heard the bridge general alarm go off, followed by a female voice stating the problem: “GB8, OFF AIR.”

Chief Engineer’s office.  NCC-1701; no bloody A, no bloody B, no bloody C, and no bloody D

The GE 250 KW transmitters have been retrofitted with a computer-controlled auto-tune system for frequency changes.  The antenna switch matrix controller has been replaced by a PLC-based system.  As the transmitters are so old, many of the transmitter-specific parts need to be machined or fabricated locally.  The rest of the transmitter parts are stocked in a large parts storage room, all of which are meticulously labeled and tracked.  The floors are waxed and spotless, there is no dust on the horizontal surfaces, the workshop is clean, tools are put away, grass and weeds are cut, etc.  All of these little details did not go unnoticed and indicated great pride by the staff in the facility itself.

The heart of the facility is the control room which consists of four rows of equipment racks and a central operating position elevated above floor level.  Arranged around that are the eight shortwave transmitters in two long transmitter galleries.

VOA Site B control room

From this point, the operator can view all of the transmitters in the two transmitter galleries.

Operating position

Around the control operator are arranged a series of computer monitors showing various station function status.

Transmitter modulation and status indicators

Antenna Matrix status and control

VOA transmitter control and status (center)

Audio monitoring router

The equipment is installed into the equipment racks by type; one rack contains the frequency generators for each transmitter, the next contains first-stage power amplifiers, the next contains audio processors and modulation monitors, etc.

Equipment racks and Shift Supervisor’s  office

Transmitter frequency generators

Audio processors, modulation monitors and patch panels

Backup audio feeds

The audio comes from the VOA studios in Washington DC via satellite. There are Comrex Access links as a backup and the Gentner EFT-1000s are used as a backup to the backup.  Prior to 1995, an eight-hop microwave system covering the 300-mile (483 KM) distance was used.

GE 4BT250A transmitter with computer-controlled tuning system installed

The station staff has created a computer-controlled tuning system for the GE transmitters. Each transmitter can change frequency several times a day, during each frequency change, all of the transmitter stages need to be retuned. When done by hand, this can take several minutes to accomplish. The computer system uses follow pots and microcontrollers to set the tuning elements to specific values. They can be touched up by hand if needed. A frequency change can usually be done in less than one minute.

GE 4BT250A transmitter

Your humble author and CE Macon Dail discussing the auto-tune system

GE 4BT250A auto-tune modification

GE 4BT250A IPA tube and input tuning.

The 2nd IPA and PA input tuning work the same way. The copper sleeve slides up and down over the coil to change resonant frequency. The vapor-cooled tube sits inside the tub at the top, anode facing down. These tuning sections are a mechanical nightmare according to Macon. One of the reasons why VOA site A was closed down was due to the frequent frequency changes at that site causing excessive wear and tear on the old GE transmitters. This particular transmitter was being repaired; the staff was rebuilding a tuning network bypass capacitor assembly

GE 4BT250A transformer vault

The GE transmitter transformers still contain PCBs. The plate transformers are in the back, basically pole transformers, one for each phase. Primary voltages are 4,180 volts, and secondary rectified voltages are 12 KVDC (PA plate supply)  and 15 KVDC (modulator plate supply).

Hallway and maintenance access to back of GE transmitters

AEG Telefunken S4005 500 KW transmitter on the air

While we were there, the newer transmitters were in operation transmitting Spanish language programming to Cuba on 13,605 KHz and 11,930 KHz.  Currently, the Greenville site is broadcasting mostly Spanish language programming with some English, French, and Bambara language programming for Africa.

A fact that does not escape the notice of the staff.

VOA transmitter gallery, showing transmitters GB8 through GB4

Continental Electronics 420A 500 KW Shortwave transmitter control and metering panel

The three Continental 420A transmitters (GB-1, GB-2, and GB-3) are essentially a pair of 250 KW amplifiers combined. As these are Doherty power amplifiers, frequency changes are very difficult to effect. These transmitters spend most of their time in backup service.

Electrical distribution panel

The antenna matrix building is very impressive. Routing eight 250 or 500 KW transmitters to 36 different antennas takes a bit of doing. Mechanizing that setup is no mean feat. The pictures I took of the antenna matrix building do not show the size and complexity of the system.

Transmission line between transmitter building and antenna matrix building

For that, we need a satellite photo:

VOA Site B antenna matrix building

Basically, the transmitter building is in the lower left-hand side of the picture. The transmission line go over to the antenna matrix building (looks like rectangular ductwork), then runs all the way to the back of the building. Each antenna transmission line comes into the building and runs to the other side. Pneumatic arms then couple the transmitter line to the antenna line. This is all controlled by a custom-made PLC and controlled by the operator from the main operating desk.

Custom-made antenna matrix control system

300-ohm open transmission lines

300 ohm open transmission lines

Some of these lines are very long but have low loss due to the air dielectric. The most used antennas are the dipole curtain arrays.

Dipole curtain arrays

These consist of a series of broadband dipole antennas arranged side by side and stacked three or four high. behind those antennas is a reflector screen. There are two curtain arrays that are slewable. The dipole antenna’s phase relationship to each other can be changed to adjust the takeoff angle and azimuth, thus giving optimum coverage to the targeted area.

Close up curtain array

In this picture, the dipole antennas are to the right. Behind them is the reflector screen, and behind that is the antenna feed system. Each antenna feed goes through the reflector screen to the center of the dipole antenna.

Each array requires four towers to support it.

Curtain dipole array supporting towers

Curtain dipole array supporting towers

Remote Antenna Switch.  Allows two antennas to use one transmission line.

The entire antenna field is viewable from an observation platform on the main building

Observation room

Entrance gate and slewable curtains in the background

Curtain arrays

The entire facility is very impressive. The truth is, I could have spent several more hours there, but I know that people have jobs to do and I felt that I had taken up enough time. We often forget in this country that not everyone in the world has access to the internet. Shortwave broadcasting has a long reach and is not subject to government-controlled firewalls or other forms of electronic censorship. Currently, the Greenville site is broadcasting mostly Spanish language programming with some English language programming for Africa. There are many areas in the world that are in political tension right now, some startlingly close to home. Places like Brazil, Argentina, and Venezuela have been in the news lately. I do not see a time when these long-reach broadcasting services will not be needed. Becoming a welcome source of good information for those affected people is good for brand USA. It would be money well spent to invest in a couple of new Continental 419H (still made in the USA) DRM-capable transmitters for this facility. While the old GE and Continental units are great, the time may come when they are really needed but unavailable due to being down for repair.

Special thanks to Macon Dail for his time, knowledge, and patience.