Installing a satellite dish

This is a replacement dish for the Comtech dish destroyed in a downburst event a few weeks ago.  The first part of the job entailed the placement of the new dish on the ground.  The town code enforcement officer was much happier with this idea than mounting it up above roof level along the back of the building as the old one was.  Of course, this is possible due to the shift in satellites last year to AMC-18.

Finding a good spot on the radio station property was fairly easy.  The studio is located in a business district, thus the sideyard requirements were zero feet, which is great.  The building inspector required that we dig a test hole to see what type of soil was there.  It turned out to be fill.  That required the footing design to be changed somewhat and stamped by a licensed engineer.  Not a major problem.

Satellite mount pole, waiting pre-pour inspection
Satellite mount pole, waiting pre-pour inspection

The footing is 36 inches wide by 7 feet deep.

A little bit of water in the bottom of the hole
A little bit of water in the bottom of the hole

The mounting pipe has flanges welded to the side of it to prevent it from spinning in the concrete.

Footing poured and cured
Footing poured and cured

After the pour, we let the concrete set up over the weekend.

New dish bolted together
New dish bolted together

The dish is assembled and waiting for lift.  We used a backhoe to lift the dish onto the mounting pole, unfortunately, I was not able to take a picture as I was on a ladder attaching the dish to the pedestal with U-bolts.

Viking 1374-990 3.7 Meter R/O dish installed
Viking 1374-990 3.7 Meter R/O dish installed

Here it is installed and aimed at AMC-18. I used the Satellite Buddy, which makes the aiming job much easier. Once the signal is acquired, I like to peak the Eb/No on the West Wood One carrier, which seems to be the most sensitive to any type of change.

Viking 1374-990 3.7 Meter satellite dish, back view
Viking 1374-990 3.7 Meter satellite dish, back view

AM station downgrade

I have been working on another formerly directional class B AM station, this one is in Rutland, VT.  WSYB has been on the air since 1931 with the same call letters serving the east-central part of Vermont.  In 1931, it was operating on 1500 kc with 100 watts of power.  In March 1941 it moved to 1490 kc with 250 watts before settling, a few months later, on 1380 with 1,000 watts, directional night time protecting CKPC in Brantford, Ontario, Canada.

The transmitter site was first located at 80 West Street (now known as BUS US 4), in Rutland.  It was moved to its current Dorr Drive (Formerly Creek Road) location in 1938, when the station was requesting a power upgrade to 250 watts.  Whilst cleaning out the old transmitter building, a copy of an operating log, dated December 7, 1945 was discovered in the attic above the transmitter room:

WSYB transmitter log, 1945

Back from the time when readings were required every 30 minutes.

In 1956, WSYB was allowed 5,000 watts daytime non-directional with 1,000 watts nighttime directional.

At some point in the early 1990s, the original towers were replaced with solid-leg Pirod towers, each 195 feet tall.

After that, things went the way things do; AM steadily declined in favor of FM, local programming was mostly replaced by syndicated satellite stuff, there were several transfers of ownership, etc.

A translator on 100.1 MHz was added in 2016; the two-bay Shively antenna was installed at the top of the South West tower.   There is local programming on the station from 6 am to noon on weekdays.  There may also be some gardening shows and other such programming on weekends.

The current owner has decided like they have done in other markets, that AM directional antenna systems are a maintenance nightmare, the risk of FCC sanctions are high for an out-of-tolerance antenna array, and the ratings and income from the station do not justify the risk/cost.  Thus, non-directional nighttime operation was applied for and granted.  The station is now a Class D with 25 ass-kickin’ nighttime watts.

WSYB had a two-tower nighttime antenna system.  The tower closest to the building (SW) was also the daytime, non-directional tower and it now holds the FM translator antenna and STL antenna.  Thus, it was decided to ground that tower and keep those antennas in service.  The far tower (NE), which was the second tower of the nighttime array would become the AM antenna.  The nighttime ATU was built for less than 1,000 watts of input power, so several components needed to be upgraded for 5,000-watt operation.

WSYB rebuilt ATU
WSYB rebuilt ATU

I had available these nice vacuum capacitors that came out of another decommissioned antenna system.  The vacuum capacitors are great because the voltage/current ratings are much higher than the mica capacitors that were in the circuit before.  You can see black goop where one of the Sangamo mica capacitors on the input leg failed several years ago.  These vacuum capacitors are rated at 15 KV and the current rating at 1.38 MHz is probably in the 70-80 amp range.  I had to move the base current meter from the former daytime (SW) tower out to the NE tower.  The day-night switch was taken out of the circuit.  The transmission line to the far tower was replaced with 7/8 inch foam dielectric cable.  A slight touch-up of the coil on the input leg of the T network was all that was required to bring it into tune.

The electric lines to the tower have been temporarily disconnected.  As soon as they are reconnected, I will vacuum out all the mouse crap and other debris.  The ATU building also needs some work sealing it up against the elements.

The tower base impedance is 75 ohms, +j95 making the base current 8.6 amps daytime and 0.58 amps night time.

WSYB radiating element
WSYB radiating element

For me, the magic of radio exists at that boundary between the real objects (towers and antennas) and the ether.  The transference of electrical voltages and currents into the magnetosphere is something that still fascinates me to this day.  Coupling a 5,000-watt medium wave transmitter to a tower and watching it work is something that I will never grow tired of.

VOA Site B, Greenville, NC

I took a brief vacation last week along the coast of North Carolina. It was relaxing and fun to be sure. I was also aware of and slightly curious about the Voice Of America shortwave site, a slight distance inland in Grimesland, NC.  Thus, I made arrangements to visit the facility on my way home.  Chief Engineer, Macon Dail, was gracious enough to give us the guided tour.  The facility is an engineering marvel.  The scale and complexity are enormous.  The entire facility is scrupulously maintained.  Many of the transmitters and other equipment have been upgraded to make them more functional.   I tried to take meaningful pictures, but in many cases, they simply do not do justice.

Edward R Murrow Transmitting Facility, (VOA Greenville Site B) Grimesland, North Carolina

Officially known as the Edward R Murrow Transmitting Station of the International Broadcasting Bureau, VOA Site B was constructed in 1961.  Six of the eight shortwave transmitters are original to the construction of the building.  The other two (BBC SK55 and AEG S4005) were added in 1986.  All of the dipole curtain arrays, rhombics, transmission line, and antenna switching matrices are also original.  A few brief statistics about this site:

  • Land area is 2,715 acres (1099 hectares).
  • Over twenty-six miles (forty-two kilometers) of 300-ohm open transmission line rated at 500 KW.
  • Sixteen dipole curtain arrays, average antenna gain 17 dBi.
  • Twenty rhombic antennas, antenna gain 15 dBi.
  • Two of the dipole curtain arrays can slew azimuth and take off angle.
  • Three Continental Electronics 420A 500 KW Doherty modulated transmitters.
  • Three General Electric 4BT250A1 250 KW high-level plate modulated transmitters.
  • One Brown Boveri Company (BBC) SK55C3 500 KW PSM transmitter.
  • One AEG Telefunken S4005 500 KW PDM transmitter.
  • The antenna switch matrix connects any of the eight transmitters to any of the thirty-six antennas

While we were there, both of the newer transmitters were on the air, running at 250 KW.  The GE transmitters are used as needed and the Continentals are rarely used due to age, difficulty to tune, change frequencies, and gross power inefficiency.

The station staff has, out of necessity, fabricated some very cool upgrades to the transmitters and facility.  The first of which is the alarm annunciator, which is based on a Star Trek (Original Series) sound scheme.  Once or twice I heard the bridge general alarm go off, followed by a female voice stating the problem: “GB8, OFF AIR.”

Chief Engineer’s office.  NCC-1701; no bloody A, no bloody B, no bloody C, and no bloody D

The GE 250 KW transmitters have been retrofitted with a computer-controlled auto-tune system for frequency changes.  The antenna switch matrix controller has been replaced by a PLC-based system.  As the transmitters are so old, many of the transmitter-specific parts need to be machined or fabricated locally.  The rest of the transmitter parts are stocked in a large parts storage room, all of which are meticulously labeled and tracked.  The floors are waxed and spotless, there is no dust on the horizontal surfaces, the workshop is clean, tools are put away, grass and weeds are cut, etc.  All of these little details did not go unnoticed and indicated great pride by the staff in the facility itself.

The heart of the facility is the control room which consists of four rows of equipment racks and a central operating position elevated above floor level.  Arranged around that are the eight shortwave transmitters in two long transmitter galleries.

VOA Site B control room

From this point, the operator can view all of the transmitters in the two transmitter galleries.

Operating position

Around the control operator are arranged a series of computer monitors showing various station function status.

Transmitter modulation and status indicators
Antenna Matrix status and control
VOA transmitter control and status (center)
Audio monitoring router

The equipment is installed into the equipment racks by type; one rack contains the frequency generators for each transmitter, the next contains first-stage power amplifiers, the next contains audio processors and modulation monitors, etc.

Equipment racks and Shift Supervisor’s  office
Transmitter frequency generators
Audio processors, modulation monitors and patch panels
Backup audio feeds

The audio comes from the VOA studios in Washington DC via satellite. There are Comrex Access links as a backup and the Gentner EFT-1000s are used as a backup to the backup.  Prior to 1995, an eight-hop microwave system covering the 300-mile (483 KM) distance was used.

GE 4BT250A transmitter with computer-controlled tuning system installed

The station staff has created a computer-controlled tuning system for the GE transmitters. Each transmitter can change frequency several times a day, during each frequency change, all of the transmitter stages need to be retuned. When done by hand, this can take several minutes to accomplish. The computer system uses follow pots and microcontrollers to set the tuning elements to specific values. They can be touched up by hand if needed. A frequency change can usually be done in less than one minute.

GE 4BT250A transmitter
Your humble author and CE Macon Dail discussing the auto-tune system
GE 4BT250A auto-tune modification
GE 4BT250A IPA tube and input tuning.

The 2nd IPA and PA input tuning work the same way. The copper sleeve slides up and down over the coil to change resonant frequency. The vapor-cooled tube sits inside the tub at the top, anode facing down. These tuning sections are a mechanical nightmare according to Macon. One of the reasons why VOA site A was closed down was due to the frequent frequency changes at that site causing excessive wear and tear on the old GE transmitters. This particular transmitter was being repaired; the staff was rebuilding a tuning network bypass capacitor assembly

GE 4BT250A transformer vault

The GE transmitter transformers still contain PCBs. The plate transformers are in the back, basically pole transformers, one for each phase. Primary voltages are 4,180 volts, and secondary rectified voltages are 12 KVDC (PA plate supply)  and 15 KVDC (modulator plate supply).

Hallway and maintenance access to back of GE transmitters
AEG Telefunken S4005 500 KW transmitter on the air

While we were there, the newer transmitters were in operation transmitting Spanish language programming to Cuba on 13,605 KHz and 11,930 KHz.  Currently, the Greenville site is broadcasting mostly Spanish language programming with some English, French, and Bambara language programming for Africa.

A fact that does not escape the notice of the staff.

VOA transmitter gallery, showing transmitters GB8 through GB4
Continental Electronics 420A 500 KW Shortwave transmitter control and metering panel

The three Continental 420A transmitters (GB-1, GB-2, and GB-3) are essentially a pair of 250 KW amplifiers combined. As these are Doherty power amplifiers, frequency changes are very difficult to effect. These transmitters spend most of their time in backup service.

Electrical distribution panel

The antenna matrix building is very impressive. Routing eight 250 or 500 KW transmitters to 36 different antennas takes a bit of doing. Mechanizing that setup is no mean feat. The pictures I took of the antenna matrix building do not show the size and complexity of the system.

Transmission line between transmitter building and antenna matrix building

For that, we need a satellite photo:

VOA Site B antenna matrix building

Basically, the transmitter building is in the lower left-hand side of the picture. The transmission line go over to the antenna matrix building (looks like rectangular ductwork), then runs all the way to the back of the building. Each antenna transmission line comes into the building and runs to the other side. Pneumatic arms then couple the transmitter line to the antenna line. This is all controlled by a custom-made PLC and controlled by the operator from the main operating desk.

Custom-made antenna matrix control system
300-ohm open transmission lines
300 ohm open transmission lines

Some of these lines are very long but have low loss due to the air dielectric. The most used antennas are the dipole curtain arrays.

Dipole curtain arrays

These consist of a series of broadband dipole antennas arranged side by side and stacked three or four high. behind those antennas is a reflector screen. There are two curtain arrays that are slewable. The dipole antenna’s phase relationship to each other can be changed to adjust the takeoff angle and azimuth, thus giving optimum coverage to the targeted area.

Close up curtain array

In this picture, the dipole antennas are to the right. Behind them is the reflector screen, and behind that is the antenna feed system. Each antenna feed goes through the reflector screen to the center of the dipole antenna.

Each array requires four towers to support it.

Curtain dipole array supporting towers
Curtain dipole array supporting towers
Remote Antenna Switch.  Allows two antennas to use one transmission line.

The entire antenna field is viewable from an observation platform on the main building

Observation room
Entrance gate and slewable curtains in the background
Curtain arrays

The entire facility is very impressive. The truth is, I could have spent several more hours there, but I know that people have jobs to do and I felt that I had taken up enough time. We often forget in this country that not everyone in the world has access to the internet. Shortwave broadcasting has a long reach and is not subject to government-controlled firewalls or other forms of electronic censorship. Currently, the Greenville site is broadcasting mostly Spanish language programming with some English language programming for Africa. There are many areas in the world that are in political tension right now, some startlingly close to home. Places like Brazil, Argentina, and Venezuela have been in the news lately. I do not see a time when these long-reach broadcasting services will not be needed. Becoming a welcome source of good information for those affected people is good for brand USA. It would be money well spent to invest in a couple of new Continental 419H (still made in the USA) DRM-capable transmitters for this facility. While the old GE and Continental units are great, the time may come when they are really needed but unavailable due to being down for repair.

Special thanks to Macon Dail for his time, knowledge, and patience.

The Gates Air FAX-10, Numero Dos

This is the second Gates Air FAX-10 that I have installed. This one is in the shipping container transmitter site from the previous post of the same name.  In this case, we dispensed with the equipment rack that came with the transmitter and installed it in a standard Middle Atlantic rack.   The Harris rack configuration wastes a lot of space and since space is at a premium, we decided to do it our own way.

Gates Air FAX-10 in Middle Atlantic rack
Gates Air FAX-10 in Middle Atlantic rack

The bottom of the rack has the transmission line dehydrator. The top of the rack has the Dielectric A60000 series 1 5/8 inch coax switch, a Tunwall TRC-1 switch controller, and the Burk ARC-16 remote control.  I cut the rack panel top to accommodate the coax switch.  The racks were removed from an old studio site several years ago and have been in storage since then.

Gates Air FAX-10
Gates Air FAX-10

The Gates Air FAX-10 transmitter on the air, running a sports-talk format.

Dummy load and Broadcast Electronics FM10B transmitter
Dummy load and Broadcast Electronics FM10B transmitter

View from the other side showing the test load and BE FM10-B transmitter.  This transmitter had a problem that I have run into before with BE FM transmitters.  The jumper between the exciter and IPA had the wrong phase rotation causing reflected power.  I added a foot to its length and that problem disappeared.