Three generations of emergency communications

Even before CONELRAD was introduced in 1951, radio broadcasting was a critical part of the emergency communications infrastructure.  The government recognized early on the ability of radio to transmit data and information quickly, over large areas to the general public.  It works when all other systems fail, as demonstrated repeatedly over the years, the last of which occurred during Hurricane Sandy last October.  Massive destruction from flooding in lower Manhattan and shoreside Brooklyn rendered the electrical grid, telephone network, cellular network, and the internet out of order.  Fortunately, enough radio stations stayed on the air and people used battery-powered AM and FM receivers to obtain information.

CONELRAD poster, circa 1950's
CONELRAD poster, circa 1950’s

CONELRAD served two purposes; first, radio stations either re-tuned their transmitters to 640 or 1240 KHz or switched off the air. Then, each station that was still on the air would transmit for ten minutes, after which, they turned off and the next station in the chain would turn on and transmit for ten minutes. This was designed to confuse the Soviet bombers flying over the north pole on their way to incinerate us. Secondly, the CONELRAD stations were to distribute emergency information during and after the said attack.

CONELRAD receiver
CONELRAD receiver

Recently, I found this CONELRAD receiver in a bomb shelter at a radio station. It dates to pre-1963, which is when CONELRAD was replaced by EBS.

EBS encoder/decoder
EBS encoder/decoder

EBS or the Emergency Broadcast System was a refinement of CONELRAD in several areas.  EBS used a two-tone attention signal to unmute receivers and alert the public that something important may be happening.  Initially designed as a national system to warn of an impending attack, in later years it was also used by state and local governments to warn of other emergencies like weather, etc.

The current system is EAS or Emergency Alert System.

CAP compliant EAS
CAP compliant EAS

The Emergency Alert System was an advancement of the EBS in several areas.  Using SAME protocol in the message headers allowed stations to automate alert message relays.  This was driven by the desire for unattended operation.  The use of SAME also allowed many different types of messages to be filtered by alert type and area.  Each EAS unit also had an internal voice recorder.  All of this was upgraded in 2011 with the introduction of CAP, which would take email messages and generate computer voice alerts to be sent out over broadcast stations.

Three generations of emergency communications equipment found at one facility.

The main problem with EAS CAP is it violates the engineering principle of KISS (Keep It Simple, Stupid).  It is an overly complicated system that relies on the internet, e-mail servers, the public telephone system, and other infrastructure that may not survive natural or man-made disasters, enemy attacks, or other disruptions.  Even something as simple as a national test proved to be problematic in 2011.

For a real emergency information network, the idea of WGU-20 has some merit.  Two or more well-positioned medium to high-powered LF stations could serve as a PEP distribution network and reliably cover the entire country.  With such a system, every broadcast station, cable head end, and NOAA radio transmitter could monitor the LF stations directly, thus replacing most of the over-the-air daisy chain and or FEMA leased lines.  The advantages of LF is that it is fairly immune to HEMP, it goes a long way reliably, can have multiple redundant transmitter sites located within secure areas like military bases, and uses time-proven technology.  That would be a real, cold war solution.  But no, let us instead rely on a hodge podge of ISPs, TELCO leased lines, 3/4G wireless networks, SMS, satellite links, e-mail servers, and the like, because: Hey!  It’s the digital age, we don’t need none of that stinking broadcasting crap.

The Nautel XR6 AM transmitter

I’ve been away working in Burlington, VT (WVMT, 620 KHz, Burlington)  for the last coupla, installing this nifty Nautel transmitter:

Nautel XL6 transmitter, WVMT Burlington, VT
Nautel XR6 transmitter, WVMT Burlington, VT

I like the Nautel units, both AM and FM;  they are well-designed, well-built, rugged transmitters.  I have lost track of how many of these units we service in the field, partly because they are becoming pretty much standard equipment at all of our installations.

Continental 315R-1 AM transmitter, WVMT, Burlington, VT
Continental 315R-1 AM transmitter, WVMT, Burlington, VT

The transmitter it is replacing is a Continental 315R-1, which is based on the Collins Power Rock design.  It is a PWM transmitter with a 15,000 volt power supply.  In their day, these were not terrible transmitters, however, like their Harris MW-5/10/50 PDM brethren, frequent thorough cleaning is required to keep the dirt/dust from arcing over.  Unfortunately, it is becoming more and more difficult to obtain parts for these units. This transmitter was installed in October of 1983, thus, almost thirty years of service is quite enough.  This unit we did not cut up and scrap, rather, it is sitting by the back door, waiting for any takers.

Continental 315R1 modulator/RF sections
Continental 315R-1 modulator/RF sections

The interior of the Continental 315-R1 transmitter.  Modulator section is on the left, RF section is on the right.

The good news is, WVMT is another one of those “successful AM station” stories.  You know, the kind of station that has local programming, local sports, news, community presence and most importantly, makes money.  For all those diligently studying the “AM Problem” for the up and coming NAB conference this April, here is a clue: It’s the programming…

Nautel XR6 transmitter, wvmt Burlington, VT
Nautel XR6 transmitter, WVMT Burlington, VT

This is the Nautel XR-6 on the air.  Positive peaks, anyone?

AM modulation monitor
AM modulation monitor

We turned that down a little bit.  Also, the station does not run AM stereo, the AM stereo mod monitor is simply a usable relic of a bygone era.

WVMT is noted as the first radio station licensed to the state of Vermont, signing on on May 10, 1922.  It has a three tower directional array located down in the swamp.  For some idea of perspective, it is 1,150 feet (350 meters) from the transmitter building to the center tower, the towers are 411 feet (125 meters) tall spaced 405 feet (123 meters) apart.

WVMT three tower directional antenna array, Burlington, VT
WVMT three-tower directional antenna array, Burlington, VT

WVMT antenna system from back of transmitter/studio building.  That is a long walk over rough terrain in the middle of the night or anytime really, but especially in the middle of the night.