October 2017
M T W T F S S
« Jul    
 1
2345678
9101112131415
16171819202122
23242526272829
3031  

Archives

Categories

VOA Site B, Greenville, NC

I took a brief vacation last week along the coast of North Carolina. It was relaxing and fun to be sure. I was also aware of and slightly curious about the Voice Of America shortwave site, a slight distance inland in Grimesland, NC.  Thus, I made arrangements visit the facility on my way home.  Chief Engineer, Macon Dail, was gracious enough to give us the guided tour.  The facility is an engineering marvel.  The scale and complexity is enormous.  The entire facility is scrupulously maintained.  Many of the transmitters and other equipment have been upgraded to make them more functional.   I tried to take meaningful pictures, but in many cases, they simply do not to justice.

Edward R Murrow Transmitting Facility, (VOA Greenville Site B) Grimesland, North Carolina

Officially known as the Edward R Murrow Transmitting Station of the International Broadcasting Bureau, VOA Site B was constructed in 1961.  Six of the eight shortwave transmitters are original to the construction of the building.  The other two (BBC SK55 and AEG S4005) were added in 1986.  All of the dipole curtain arrays, rhombics, transmission line and the antenna switching matrix are also original.  A few brief statistics about this site:

  • Land area is 2,715 acres (1099 hectare).
  • Over twenty six miles (forty two kilometers) of 300 ohm open transmission line rated at 500 KW.
  • Sixteen dipole curtain arrays, average antenna gain 17 dBi.
  • Twenty rhombic antennas, antenna gain 15 dBi.
  • Two of the dipole curtain arrays can slew azimuth and take off angle.
  • Three Continental Electronics 420A 500 KW Doherty modulated transmitters.
  • Three General Electric 4BT250A1 250 KW high level plate modulated transmitters.
  • One Brown Boveri Company (BBC) SK55C3 500 KW PSM transmitter.
  • One AEG Telefunken S4005 500 KW PDM transmitter.
  • Antenna switch matrix connects any of the eight transmitters to any of the thirty six antennas

While we were there, both of the newer transmitters were on the air, running at 250 KW.  The GE transmitters are used as needed and the Continentals are rarely used due to age, difficulty to tune, change frequencies and gross power inefficiency.

The station staff has, out of necessity, fabricated some very cool upgrades to the transmitters and facility.  The first of which is the alarm annunciator, which is based on a Star Trek (Original Series) sound scheme.  Once or twice I heard the bridge general alarm go off, followed by a female voice stating the problem: “GB8, OFF AIR.”

Chief Engineer’s office.  NCC-1701; no bloody A, no bloody B, no bloody C, and no bloody D

The GE 250 KW transmitters have been retrofitted with a computer controlled auto tune system for frequency changes.  The antenna switch matrix controller has been replaced by a PLC based system.  As the transmitters are so old, many of the transmitter specific parts need to be machined or fabricated locally.  The rest of the transmitter parts are stocked in a large parts storage room, all of which is meticulously labeled and tracked.  The floors are waxed and spotless, there is no dust on the horizontal surfaces, the work shop is clean, tools are put away, grass and weeds are cut, etc.  All of these little details did not go unnoticed and indicate great pride by the staff in the facility itself.

The heart of the facility is the control room which consists of four rows of equipment racks and a central operating position elevated above floor level.  Arranged around that are the eight shortwave transmitters in two long transmitter galleries.

VOA Site B control room

From this point, the operator can view all of the transmitters in the two transmitter galleries.

Operating position

Around the control operator are arranged a series of computer monitors showing various station function status.

Transmitter modulation and status indicators

Antenna Matrix status and control

VOA transmitter control and status (center)

Audio monitoring router

The equipment is installed into the equipment racks by type; one rack contains the frequency generators for each transmitter, the next contains first stage power amplifiers, the next contains audio processors and modulation monitors, etc.

Equipment racks and Shift Supervisor’s  office

Transmitter frequency generators

Audio processors, modulation monitors and patch panels

Backup audio feeds

The audio comes from the VOA studios in Washington DC via satellite. There are Comrex Access links as a backup and the Gentner EFT-1000s are used as a backup to the backup.  Prior to 1995, an eight hop microwave system covering the 300 mile (483 KM) distance was used.

GE 4BT250A transmitter with computer controlled tuning system installed

The station staff has created a computer controlled tuning system for the GE transmitters. Each transmitter can change frequency several times a day, during each frequency change, all of the transmitter stages need to be retuned. When done by hand, this can take several minutes to accomplish. The computer system uses follow pots and micro controllers to set the tuning elements to specific values. They can be touched up by hand if needed. A frequency change can usually be done in less than one minute.

GE 4BT250A transmitter

Your humble author and CE Macon Dail discussing the auto tune system

GE 4BT250A auto tune modification

GE 4BT250A IPA tube and input tuning.

The 2nd IPA and PA input tuning work the same way. The copper sleeve slides up and down over the coil to change resonant frequency. The vapor cooled tube sits inside the tub at the top, anode facing down. These tuning sections are a mechanical nightmare according to Macon. One of the reasons why VOA site A was closed down was due to the frequent frequency changes at that site causing excessive wear and tear on the old GE transmitters. This particular transmitter was being repaired; the staff was rebuilding a tuning network bypass capacitor assembly

GE 4BT250A transformer vault

The GE transmitter transformers still contain PCB’s. The plate transformers are in the back, basically pole transformers, one for each phase. Primary voltages is 4,180 volts, secondary rectified voltages are 12 KVDC (PA plate supply)  and 15 KVDC (modulator plate supply).

Hallway and maintenance access to back of GE transmitters

AEG Telefunken S4005 500 KW transmitter on the air

While we were there, the newer transmitters were in operation transmitting Spanish language programming to the Cuba on 13,605 KHz and 11,930 KHz.  Currently, the Greenville site is broadcasting mostly Spanish language programming with some English, French and Bambara language programming for Africa.

A fact that does not escape the notice of the staff.

VOA transmitter gallery, showing transmitters GB8 through GB4

Continental Electronics 420A 500 KW Shortwave transmitter control and metering panel

The three Continental 420A transmitters (GB-1, GB-2 and GB-3) are essentially a pair of 250 KW amplifiers combined. As these are Doherty power amplifiers, frequency changes are very difficult to effect. These transmitters spend most of their time in backup service.

Electrical distribution panel

The antenna matrix building is very impressive. Routing eight 250 or 500 KW transmitters to 36 different antennas takes a bit of doing. Mechanizing that set up is no mean feat. The pictures I took of the antenna matrix building do not show the size and complexity of the system.

Transmission line between transmitter building and antenna matrix building

For that, we need a satellite photo:

VOA Site B antenna matrix building

Basically, the transmitter building is in the lower left hand side of the picture. The transmission line go over to the antenna matrix building (looks like rectangular duct work), then run all the way to the back of the building. Each antenna transmission line come into the building and runs to the other side. Pneumatic arms then couple the transmitter line to the antenna line. This is all controlled by a custom made PLC and controlled by the operator from the main operating desk.

Custom made antenna matrix control system

300 ohm open transmission lines

300 ohm open transmission lines

Some of these lines are very long but have low loss due to the air dielectric. The most used antennas are the dipole curtain arrays.

Dipole curtain arrays

These consist of a series of broadband dipole antennas arranged side by side and stacked three or four high. behind those antennas is a reflector screen. There are two curtain arrays that are slewable. The dipole antennas phase relationship to each other can be changed to adjust the take off angle and azimuth, thus giving optimum coverage to the targeted area.

Close up curtain array

In this picture, the dipole antennas are to the right. Behind them is the reflector screen, behind that is the antenna feed system. Each antenna feed goes through the reflector screen to the center of the dipole antenna.

Each array requires four towers to support it.

Curtain dipole array supporting towers

Curtain dipole array supporting towers

Remote Antenna Switch.  Allows two antennas to use one transmission line.

The entire antenna field is viewable from an observation platform on the main building

Observation room

Entrance gate and slewable curtains in background

Curtain arrays

The entire facility is very impressive. The truth is, I could have spent several more hours there, but I know that people have jobs to do and I felt that I had taken up enough time. We often forget in this country that not everyone in the world has access to the internet. Shortwave broadcasting has a long reach and is not subject to government controlled firewalls or other forms of electronic censorship. Currently, the Greenville site is broadcasting mostly Spanish language programming with some English language programming for Africa. There are many areas in the world that are in political tension right now, some startlingly close to home. Places like Brazil, Argentina and Venezuela have been in the news lately. I do not see a time when these long reach broadcasting services will not be needed. Becoming a welcome source of good information for those affected people is good for brand USA. It would be money well spent to invest in a couple of new Continental 419H (still made in the USA) DRM capable transmitters for this facility. While the old GE and Continental units are great, the time may come when they are really needed but unavailable due to being down for repair.

Special thanks to Macon Dail for his time, knowledge and patience.

Speaking of Radio…

I was talking to a friend from Russia about history, my job and various other things that are going on in my life. I received this reply, which I thought was interesting on a number of levels:

I’m glad we are on the same page about the era of the ‘cold war’. We were interested in your life even more than you in ours. We had almost no sources of information except for ‘The morning star’ which is a newspaper of the Communist party of Great Britain. The Voice of America and the Liberty (or Freedom, I have no clue because for us it was ‘RADIO SVOBODA’) were extremely hard to tune on. All foreign broadcasts were jammed. So to listen to the station you should maximize the volume up to the limit which was dangerous. Soviet houses are not at all soundproof and your neighbors could easily rat on you. Since that time I’d been dreaming of a small radio with could receive a clear signal from abroad. Of course we have the Internet broadcasting now but they often use old recording instead of live air and the signal depends on your data carrier. You should be online, you should have an app and unlimited data on your contract, your phone should be charged all the time. Too many conditions. Unfortunately a lot of foreign sites are banned here and the trend is to make this number bigger and bigger.

I find that perspective interesting.  We take for granted our ability to listen to information and listen to different points of view, even those we don’t agree with.  There are still trouble spots in the world and some people are not as fortunate.  It is very easy to block internet traffic and there are several countries that currently block access to some or all of the internet, for the safety of their citizens, no doubt.  Ideas are dangerous.

VOA/RFE transmitter site, Biblis Germany

VOA/RFE transmitter site, Biblis Germany. Photographer: Armin Kübelbeck, CC-BY-SA, Wikimedia Commons

In the last ten to fifteen years, many large government shortwave broadcasters have reduced or eliminated their programming favoring an internet distribution model.  This is a mistake.  It is very difficult to successfully jam terrestrial radio broadcasts.  Shortwave Facilities are expensive to develop and maintain, there is no doubt about that.  However, as the Chief Engineer from Radio Australia (ABC) once told me “HF will get through when nothing else will.”  Ironically, ABC has eliminated its HF service on January 31, 2017.

It seems to me that a sort of “Shortwave Lite” version of broadcasting might be the answer.  Use more efficient transmitters with lower power levels closer in to the target areas.  Such transmitters could be coupled to rotatable log periodic antennas to target several listening areas with one system, thus greatly reducing the number of towers and land required.  Solid state transmitters with a power of 10-50 KW are much, much more efficient than their tube type brethren.

DRM30 (Digital Radio Mondiale) has not gained wide spread use in the MF and HF bands.  Like it’s HD Radio counterpart, lack of receivers seems to be one of the adoption issues.  As of 2017, there are only four DRM30 capable receivers for sale not counting software plug ins for various SDRs.  That is a shame because my experience with DRM30 reception has been pretty good.  I have used a WinRadio G303i with DRM plug in, which set me back $40.00 for the license key (hint for those nice folks at the DRM consortium; licensing fees tend quash widespread interest and adoption).

CFRX, Toronto coverage map, average HF propagation conditions

CFRX, Toronto coverage map, average HF propagation conditions

Finally, I have advocated before and still advocate for some type of domestic shortwave service.  Right now, I am listening to CFRX Toronto on 6070 KHz.  That station has a transmitter power output of 1 KW into a 117 degree tower (approximately 50 feet tall) using a modified Armstrong X1000B AM transmitter netting  a 15-32 µV received signal strength some 300 miles away.  That is a listenable signal, especially if there is no other source of information available.  The average approximate coverage area for that station is 280,000 square miles (725,000 square kilometers). That is a fairly low overhead operation for a fairly large coverage area.  Perhaps existing licensed shortwave broadcasters should be allowed to operate such facilities in a domestic service.

The point is, before we pull the plug on the last shortwave transmitter, we should carefully consider what we are giving up.

Something fun

So, I spent wasted several hours on this SDR website over the holiday weekend:

University of Twente SDR website

University of Twente SDR website

This is a web based SDR hosted by the University of Twente in Enschede, Netherlands. I enjoyed listening to the European medium wave and shortwave stations available.  Something that is always fun to checkout: UVB-76 on 4625 KHz.

Have fun!

PS: A special thanks to all those who have donated to the cause via the donate button on the upper right side bar.  I had enough money to buy a FUNcube dongle SDR.  I think I have all the other necessary hardware to launch one of these sites myself.  If or when that happens, I will post a link here.

Those Shortwave Sites

How is our Alaska doing?

How is our Alaska doing?

It is a joke in circulating in Russia at the moment.  Kind of funny when you think about it.

In light of the developing situation in Eastern Europe, it may be wise to retain some of those HF broadcasting (AKA Shortwave) sites.  It may be too late for Canada, however, the US government still has a few high powered HF sites that they may want to hold onto for a while.  There are several ways that shortwave broadcasting can be beneficial.

  • Like all radio broadcasting, quality content is needed to attract listeners. Most of what is available on shortwave is religious or transparent government propaganda. There are exceptions to this, but they are rare. Introduce quality programming, and shortwave listenership will increase.
  • DRM 30 (Digital Radio Mondial) is still in its experimental phase.  It has been demonstrated to work reasonably well on HF.  Several digital data formats are successfully being used on HF; HFDL, ALE, STANAG 5066, PACTOR and others.  DRM 30 has an advantage that H.264 video can also be transmitted.
  • The VOA has been experimenting with images transmitted via MFSK, AKA the “VOA Radiogram.”
  • HF is always susceptible to changing propagation.  However, it can be reliable enough, especially when frequency diversity is employed, to overcome these issues when no other method of communication is available.
  • DRM and MFSK can be decoded using a simple shortwave radio and a computer sound card.  A DRM CODEC is required, but those are readily available for download.
  • Analog shortwave broadcasting using AM is still viable.  AM has the advantage of being extremely simple to receive and demodulate.  Simple receiver kits can be built and run on 9 volt a battery.
  • While the Soviet Union had an extensive jamming network, those sites have long since been non-functional.  Most countries have discontinued the practice of jamming with the exception of China, North Korea, Cuba and perhaps some countries in the middle east (the usual suspects).

Sample of DRM reception via shortwave:

If the internet is censored or somehow becomes unavailable in that part of the world,  shortwave may be the only method to convey an alternate point of view.

Hopefully, things will settle down and return to at least a civil discourse.  However, it never hurts to have a plan.

Horby and Solvesborgs transmitter site

This is a video of Radio Sweden’s shortwave and medium wave transmitter sites:

Håkan Widenstedt at Hörby and Sölvesborgs Transmitter sites from HamSphere on Vimeo.

This was filmed in 2006. In 2010, Radio Sweden ceased broadcasting on medium and shortwave, thus I believe these sites have Horby (HF) has been dismantled.  Medium wave installation Solvesborg is visible starting at 15:30. Two tower directional array 180 degree towers with 600 KW carrier power. Quite impressive.

There is an effort to at save the Solvesborg site, perhaps as a museum.

Transmitters were in Skane, Sweden:


View Larger Map

h/t Shortwave Central

Voice of Russia to cut shortwave

Another government shortwave broadcaster calls it quits.  The Voice of Russia (Голос России, Golos Rossii) will cut its shortwave service as of January 1st, 2014. Originally known as Radio Moscow, it has been on the air continuously since 1922. It will be sad to see yet another shortwave station pull the plug.

Radio Moscow stamp, courtesy of Wikimedia

Radio Moscow stamp, courtesy of Wikimedia

I can remember Radio Moscow being one the first shortwave stations I tuned across on my Uncle’s Zenith Transoceanic shortwave radio.  It was fascinating to me to hear the news from the far away and all too scary Soviet Union.  After a short bit of interval music and a series of beeps counting down to the top of the hour, a man with a deep, sonorous voice came on and said “Zis is Moscow…” It was very dramatic.

The economics of HF broadcasting are daunting to say the least.  Minimum power levels in the US are 50,000 watts into a highly directional, high gain antenna.  Most stations use greater than 50 KW transmitters, which will very quickly use gobs of electricity, becoming an expensive operation.  Other expense include maintenance on transmitters, buildings, land and antennas.  With little or no opportunity to commercialize, it becomes difficult to justify a shortwave operation.  Sadly, those are the state of affairs in HF broadcasting today.

WYFR shortwave signing off

Family Radio’s WYFR shortwave service will be ending on June 30, 2013.

WYFR 50 years

WYFR 50 years

Shortwave transmitting is very expensive, and no doubt, competing IP distribution technology and diminishing returns on such investment must play a factor in this decision.  Family radio has been struggling ever since the world did not end as predicted in 2011.

I believe that site has fourteen 100KW HF transmitters and eighteen antennas of various type.  There is a complete photo album here: https://picasaweb.google.com/115519153277489147905/WYFR?noredirect=1#5149450014785168130 courtesy of Kent.

Kind of sad to see them go, I don’t know what their plans are after June 30.

Suppression of ideas

I found this video called Empire of Noise about broadcast radio jamming. It seems to be about ten years old and is a post cold war documentary about the jamming of radio signals by the USSR, Warsaw Pact counties and China.  It is an interesting look into the extent and expense that governments will go to to suppress counter thought and ideas.

The video is quite long, and there are stretches of jamming noise that can be annoying, but perhaps that is the point.  It is worth the time if interested in history and radio broadcasting.  You know what they say about history; those that do not understand history are destined to repeat it.

A few of the highlights:

  • The former Soviet Union had the most extensive jamming network of anyone on Earth.  There were groundwave jamming centers in eighty one Soviet cities which consisted of approximately 10-15 transmitters each in the 5 KW covering the medium and shortwave frequencies.
  • Each groundwave jamming station consisted of a transmitter site and a receiver/control site.  The receiver site possessed lists of frequencies to monitor, when objectionable material was heard, the jamming transmitters were turned on.
  • There was a skywave jamming network consisting of 13 jamming stations with 10 or more 100-200 KW transmitter in each.  There were some transmitters in the 1,000 KW power range.  These were located in Krasnodar, Lvov, Nikolaev, Yerevan, Alma-Ata, Grigoriopol, Sovieck, Novosibrisk, Tashkent, Khanbarovsk, Servdlosk and Moscow (some of these names may have changed).  These operated in a similar fashion to the groundwave jammers.
  • After sign off of government stations, Soviet jammers sent a blanketing signal on the IF frequency (most likely 455 KHz) of receivers to effectively block them from receiving any station while USSR government stations were off the air.
  • Baltic states had 11 jamming stations with approximately 140 transmitters
  • Ukraine had approximately 300 Jamming transmitter.
  • Warsaw Pact countries had extensive medium frequency jamming networks.
  • It is estimated it takes about 20 times the transmitted power to jam any one signal.

The entire jamming network was hugely expensive to equip and operate, costing several tens of millions of dollars per year.

It is interesting that the US position in all of this was:

Everyone has the right to seek, receive and impart information through any media and regardless of frontiers.   Jamming of radio broadcasts is condemned as the denial of the right of persons to be fully informed concerning news, opinions and ideas.

Sounds perfectly reasonable.  The free exchange of ideas and information over the internet is something that should be guarded carefully and should not be restricted or censored.  Perhaps somebody should inform congress.

Shortwave Broadcasting and the free press

WWCR wire rhombic antennas

WWCR wire rhombic antennas

Shortwave broadcasting is often overlooked as a domestic news outlet.  This is by design and is a throw back to the cold war era when shortwave broadcasting was seen as an international propagation outlet, mainly used by the VOA.  In fact, according to the Smith-Mundt Act of 1948, the Voice of America is forbidden to broadcast directly to American citizens. The intent of the legislation is to protect the American public from propaganda actions by its own government.  Nice, huh?

WRMI corner reflector

WRMI corner reflector

The way the FCC rules governing shortwave (AKA HF) broadcasting are written, the station needs to be designed and configured to transmit signals to areas outside of the US.  Any coverage within the US is considered incidental.  See also CFR 47 73 part F.

WRMI signal 50 KW 9350 KHz

WRMI signal 50 KW 9950 KHz

That being said, many of the non-VOA HF broadcasters are well received in the US.  There is nothing that is preventing a shortwave station on the west coast beaming it’s signal across the North American continent to Europe, or over the poles, etc.  These stations’ call signs start with a K or W much the same as FM and AM broadcasting stations.  Most of them are religious broadcasters, however, there are a few that offer non-religious programming or a mixture of both.

As Clear Channel lays off more staff and becomes a computer automated shell, I am beginning to think that traditional AM and FM broadcasting is on the way out.  Television news and the 24 hour news cycle has blurred the line between journalism and opinion.  Newspapers have filled the role of government watchdogs and general information sources since this country was founded.  Newspapers have fallen on hard times with many cutting investigative reporters, general reporters and or going out of business.  The internet has become the defacto information source for many people, which is fine so long as users understand its limits.

The big problem with all of this is the internet is a fragile thing, controlled by a few very large companies.  A few keystrokes and a router table is re-written to exclude a site that might have detrimental information.  Distributed Denial of Service attacks have taken down Wikileaks for days.  Collateral Wikileaks related damage occurred to Amazon.com, Visa, Mastercard and Paypal.  A few “persuasive” calls from an important government agency or official to a ISP or server company can easily take a site or multiple sites off line.   Search results can be skewed by search engines, or by large companies like BP did during the Gulf oil spill.

The FCC debates on so called “net neutrality” have yet to produce any meaningful frame work to avoid corporate and search engine censorship.  This also assumes that the government can justly regulate the internet, which, in this day and age is a stretch of the imagination.

All of this is leaving an information void.  As the saying goes, nature abhors a vacuum.

Enter Shortwave Radio.  Now, I’ll be the first to admit, there are a lot of strange things that can be heard in the shortwave broadcast band.  However, it one can separate the wheat from the chaff, some rewarding entertainment can be had.   Most of the non-government shortwave stations in the US are religious broadcasters.  There are at least three stations that offer time brokered programs, some religious and some not.  WBCQ is always a good bet.  WRMI is offering more and more non-religious programming.  WWCR also has some general programming.  While government broadcasters like the BBC, CBC and others have greatly curtailed their broadcasts to North America, this is not necessarily a bad thing, as other smaller broadcasters can be heard where the giants once roamed.

As solar cycle 24 heats up, the programming selections on any given day can vary widely. Radio Australia (ABC) has been booming in on 6020 KHz in the mornings around here.  They have an excellent country music program and I have been introduced to several songs and musicians that I would not have otherwise heard.  Today I heard a great show on Radio Australia Today about New Orleans, Ray Nagin, the aftermath of Hurricane Katrina and lots of things that haven’t aren’t normally heard here in the US.

Key to shortwave listening is the receive antenna.  One particular MF/HF receive antenna is the K9AY loop.  I have had very good luck with that antenna on both standard and international broadcast.  I have to say, I am finding fewer and fewer things to listen to on the AM band.  I have taken the opportunity to make a few circuit boards with a 10-12 dB preamp for controlling the pair of loops used in a K9AY array.  The preamp is based on a common base Norton design, which has low noise and moderate gain.  I use the preamp sparingly, the main reason for it is the 4 way hybrid splitter, which adds 6.2 dB of loss to the antenna output.  Still, I have noticed, especially on narrow bandwidth digital signals, the preamp can mean the difference between decoding a signal or not.

I am making extras, K9AY antenna systems, preamps, receiver splitters and other general shortwave receive systems, which I plan to offer for sale at a later date.  As they say, stay tuned.

Solar Cycle 24 brings better Shortwave Listening

Because of the utterly depressing selection of programming available on the standard broadcast (AM) band, lately I have been getting my radio fixes on higher frequencies.  Shortwave Listening can be a fun way to hear all sorts of things, from the very retro Voice of Russia interval music, which makes me want to go check on my survival bunker, to the almost comical Radio Havana, “Broadcasting from the free Americas,” depending on what your definition of free is, the number and type of programs are almost limitless.  Whether or not one believes the conspiracy theories posed by Alex Jones, listening to that program can give you the hebegebees (see above note about survival bunker).

Most of the shortwave broadcasts in this country are religious shows.  One can listen to Catholic Mass every morning at 8 am on WEWN, if so inclined.  I don’t think it actually counts as going to church, though.  There are several other shows on US shortwave, like Le Show, which appears to have a copyrighted on the phrase “this is a copyrighted feature of this broadcast,” but you have to hunt around for them.  WBCQ offers a variety of programs, likely the the lowest ratio of religious programs on any privately owned shortwave station in the US.

Don’t expect to find the old stalwarts, the VOA or the BBC to have very good signals in the US.  Both those agencies severely curtailed shortwave broadcast to the US starting around 2000 or so.

There is also a smattering of shortwave pirate broadcasters clustered around 6.925 KHz, which can be entertaining in their own way.

A good website that lists all the shows in English by hour and frequency, is short-wave.info.

Solar Cycle 24 is heating up, with excellent propagation last week and continuing on this week, I was able to hear some pretty rare stations.  Even better, we are in the early stages with the peak predicted sometime around 2013.  I even heard one wag predicting that the coming solar cycle jives with the recently popular “The world will end in 2012” theme.  With the long winter months ahead, I have been tuning up the shortwave listening post in my house.

I am going to be doing a multi-part post on how to set up a good shortwave listening post, how to get around local electrical noise issues, antennas, grounding, receiver selection and so forth.

Axiom


A pessimist sees the glass as half empty. An optimist sees the glass as half full. The engineer sees the glass as twice the size it needs to be.

Congress shall make no law respecting an establishment of religion, or prohibiting the free exercise thereof; or abridging the freedom of speech, or of the press; or the right of the people peaceably to assemble, and to petition the Government for a redress of grievances.
~1st amendment to the United States Constitution

Any society that would give up a little liberty to gain a little security will deserve neither and lose both.
~Benjamin Franklin

The individual has always had to struggle to keep from being overwhelmed by the tribe. To be your own man is hard business. If you try it, you will be lonely often, and sometimes frightened. But no price is too high to pay for the privilege of owning yourself.
~Rudyard Kipling

Everyone has the right to freedom of opinion and expression; this right includes the freedom to hold opinions without interference and to seek, receive and impart information and ideas through any media and regardless of frontiers
~Universal Declaration Of Human Rights, Article 19

...radio was discovered, and not invented, and that these frequencies and principles were always in existence long before man was aware of them. Therefore, no one owns them. They are there as free as sunlight, which is a higher frequency form of the same energy.
~Alan Weiner

Free counters!