March 2017
M T W T F S S
« Feb    
 12345
6789101112
13141516171819
20212223242526
2728293031  

Archives

Categories

Out with the old, in with the new

Pictures of a backup power systems replacement evolution at one of our clients.  The old generator was a Katolight 45FGH4, circa 1990.  The new generator is a Cummins Power GGHE-1503557 60 KW 3 phase.  Unfortunately, when the Katolight generator was moved from the previous studio location in 1998, it was never installed correctly.  The 500 gallon propane tank was undersized, the gas tubing was undersized, etc.  We fixed those items, but the damage was done.  After running too lean under load a few times, the head gasket blew and there is oil in the antifreeze and antifreeze in the oil.  It is a Ford straight six engine, and sure, we could rebuild it, but why bother.  This is a major group of stations in a very lucrative market, it makes much more sense to replace the entire unit.

Katolight Genset hooked up to the crane, ready to move

Katolight Genset hooked up to the crane, ready to move

Generator lift

Generator lift

In addition to the head gasket problem, the load on the generator has increased. Since the old generator was installed in 1998, two more stations have been added to this facility. That means another air studio, another production studio, more computers, servers, air conditioning etc. Thus, the new generator is rated for 60 KW.

Cummins Power Generator delivery

Cummins Power Generator delivery

Cummins generator lift

Cummins generator lift

After the GENSET is placed, connections for remote start, battery charger, block heater and AC power output are made. We were able to reuse the existing conduit and cable, thankfully the electricians used 3/0 AWG cable for the AC power connections to the transfer switch.

Cummins Power generator in place

Cummins Power generator in place

It appears that they have dropped the Onan name, but not the color, completely.

Generators and mice

Never a good mix, unfortunately, it usually turns out bad for the mice and sometimes the equipment.  This is a Onan GGMA 20 KW propane generator installed in a rural area, not that the location matters that much.  Mice will find what they perceive as a safe secure spot to hold up for the winter.

Onan GGMA20 propane generator

Onan GGMA20 propane generator

Unfortunately, the mice decided that the generator cooling fan was a good place to make a nest.  It probably was until the generator started, then the mice had a quick lesson in centripetal force.

Mice and generator

Mice and generator

This will require some additional maintenance in the spring time when I change to oil.  By that time, the carcases should be mostly dried out and easier to deal with.

Onan generator mice

Onan generator mice

The mice are generally a nuisance, getting into ATU’s, transmitters, electrical panels, spare parts boxes, etc.  Once in place, they begin to bread and reproduce.  The gestational period for a mouse is 21 days, which means populations rapidly increase creating further problems. If left alone, mice will chew through electrical insulation, control wires, cardboard boxes, packing material and so on.  They tend to carry diseases like hantavirus and bubonic plague.

I don’t usually agree to using poison to get rid of pests, it tends to linger in the environment and accumulate up the food chain.  However, judicious use of some type of poison is usually the only way to effectively get rid of a mouse infestation.

Wherever possible, make sure that all openings and holes into equipment and buildings are sealed up.  Do not kill snakes and other predators, who will assist in keeping the mice in check.  Employ traps and wear gloves when removing dead mice and mouse parts.  Beware of fleas.

The Generator and the UPS

An issue I had to deal with recently; an unstable generator/UPS relationship.  When the generator was running under load, it surged repeatedly causing the UPS to drop out and not recharge.  Eventually, the UPS ran out of juice and shut down, killing the power to the Sine Systems remote control and telephone system.  Of the two, the remote control was the biggest pain to fix, as it lost it’s timed commands and would not reduce power at sun set for the associated class D AM station.

What went wrong?  This is a chart of typical problems with generators operating UPS loads:

Symptom Potential Problem
Fail to “lock on” to generator power Improper generator frequency or voltage
Poor generator regulation
Unrealistic performance requirements
Instability of generator Voltage regulator sensitivity
Control loop compatibility
Filter/control interaction
Governor or AVR problem
Fail to sync bypass Frequency or voltage out of range
Poor frequency stability
Unrealistic performance requirements
Changes to total load on the system
Generator output voltage distortion
Instability at specific load levels Control loop compatibility
Instability at load changes Control loop compatibility
Metring errors Generator output voltage distortion
Loss of voltage control Excess capacitance in filters vs. load

Table courtesy of Cummins Power Generation.

Generator excitation methods can be the culprit in many of these situations.  Generators often use one of three types of excitation for their field coils:

  • Shunt excited SCR (silicon controlled recifier)
  • Shunt excited PWM (pulse width modulation)
  • PGM (permanent magnet generator)

Of the three, permanent magnet generator is the most stable since the AVR (automatic voltage regulator) is powered by a separate small generator which is unaffected by the load on the main generator output.  SCR and PWM both use the generator output windings, which makes them susceptible to load inducted voltage distortion brought on by non-linear loads.  Therefore, in locations where large UPSs are known to be part of the load, PGM excited generators are the best choice.

PMG generator diagram

PMG generator diagram

Sometimes, the generator is already in use before the UPS is installed.  In that case, there are some remedial steps that can be taken.  The speed which the voltage regulator reacts to changes in the load is often the culprit in many of these situations.  It may seem counter intuitive, however, the faster the AVR reacts, the more fluctuations there will be in the voltage and frequency.  A UPS can operate under a wide range of voltages and frequency, provided they do not rapidly change.

Depending on other loads, it may be necessary to dampen the gain on the AVR to slow it’s reactions down.  This will work if there are not large intermittent starting loads on the generator such as air conditioning compressors.

Another method would be to delay the UPS transfer to generator power until after all the other loads have been satisfied.  This will ensure that the generator voltage and current fluctuations are damped by the existing load.

The generator’s size needs to account for the equipment attached to the UPS and the battery charging load. With a larger UPS, the battery charging load can be significant. Generators that are improperly sized will not be made to work under any circumstances, hence the “unrealistic performance requirements” noted in the chart above.

You can read the entire Cummins Power white paper on generators powering UPS loads here.

The Onan RS-15000 Generator

It is a cute little thing. This one is being installed at a mountain top transmitter site for a class A WKIP-FM in Ellenville, NY.  It is way up in the air (at least by local standards) at 2,450 feet AMSL.  As such, the TPO is only 300 watts into a one bay antenna.  Therefore, even this little generator will be loafing along.  I added all the rack equipment up, both transmitters (main and backup), and the electric resistance heater and came up with a grand total of 6,300 watts.  The working load today was 3,200 watts, which I would assume is about average.

Onan RS-15000 at transmitter site with ice shield

Onan RS-15000 at transmitter site with ice shield

Denis, my sometimes helper, build an ice shield over the top of the unit with pressure treated wood.  This unit was placed about 40 feet away from the 140 foot tower, next to the concrete block building.  Still, on a windy day, I could see some chunks of ice flying off the tower in this direction.

It has a Lister/Petter 1900 cc engine, 1800 RPM, 240 volt split phase generator.  At 25% load, it burns 1.2 gallons of propane per hour.

Onan RS-15000 gaseous generator

Onan RS-15000 gaseous generator

This is annoying. The gas installer blocked access to one of the through holes in the bottom of the enclosure frame. Actually, more than annoying, downright annoying as it blocked the exact center of the hole.  I had to move the regulator up about two inches so I could run the 1 inch flex under the gas line.  This, in turn, led to some amount of swearing.

Gas supply to generator installed by selfish gas man

Gas supply to generator installed by selfish gas man or woman

Other side of the engine:

Lister petter 4 cylinder 1900 cc engine

Lister Petter 4 cylinder 1900 cc engine

Push rods going to rocker arms over the cylinders.  Low tech, under head cam engine. That’s okay, so long as it works when it is supposed to.

Onan RS-15000 generator wired to transmitter building

Onan RS-15000 generator wired to transmitter building

PVC conduit running into the transfer switch.  The final connection is made with liquid tight flexible metal conduit (FMC).  The control wiring is run in a separate 1/2 inch conduit, as required by NEC.

Overhaul of the Onan 12JC4R generator

I was fortunate enough to acquire this generator last fall.  It was new in 1969 and has unknown hours on it, but it appears in decent shape.  I am going to do a level two overhaul and install it as backup power for my house/shop.  The first order of business is a complete inspection.  I discovered a few problems; the starter didn’t crank, the distributor was loose, and the carburetor had some burned out chunk of metal attached to it.

Onan 12JC4R generator

Onan 12JC4R generator

First, the starter:  These units use a Prestolite MEO3006 starter, which is common to several Chrysler products from the late ’60s and early ’70s.  This is obviously a replacement unit, as it is not “Onan Green.”  When I hooked a battery up and tried to turn the motor over, the start relay clicked but nothing else happened.  I dismounted the starter and removed the starter solenoid.  The interior of the starter motor looked in good condition, which points the solenoid.  Sure enough, I removed the back of that unit and found two wires burned through and a large blackened area.  While I had the starter off, I hooked it up to a 12 volt battery and it worked fine.  A new starter costs $469.00, a new solenoid cost $59.00.  I opted for the solenoid.

Onan 12JC4R burned out generator starter solenoid

Onan 12JC4R burned out generator starter solenoid

The next thing is the distributor.  I was checking the points and contemplating replacing the breaker points with an electronic ignition when I discovered the distributor could turn 1/8 of a turn in each direction, as when making timing adjustments.

Onan 12JC 4R distributor clamp

Onan 12JC 4R distributor clamp

I used a 3/8 box wrench and tighten up the clamp holding the distributor shaft.  It took several turns and makes me wonder why it was loose.  I will have to check the timing with a light once I get it running.  This also could be why the generator was not running when we took it out of service.

Onan 12JC 4R rotor and breaker points

Onan 12JC 4R rotor and breaker points

As for the points, they look brand new, as does the rotor and distributor cap.

Onan 12JC 4R generator spark plug, champion H8C

Onan 12JC 4R generator spark plug, champion H8C

The spark plugs look well used and the plug wires look original.

Finally, there was an electric choke mechanism on the carburetor which is completely unnecessary for a propane fueled unit.  The choke plate itself was wired open.  The electric choke was was burned open, so I removed the assembly.  I then spent some time at the local NAPA cross referencing parts.  Here is a tune up list:

Nomenclature Onan part (old) Onan part (new) Napa Part Alternate
Oil Filter 122A185 122-0193 1084 Fram PH16
Points* 166P245 166-0245 CS709
Rotor 166P234 166-0234 AL58/AL52
Distributor cap 166B307 166-0235 AL91
Condenser* 166P310 166-0310 AL38
Ignition Coil** 166B310 166-0859-02 701002 PRX 405011
Plug wire #1 167A1410 167-1602 701064
Plug wire 2,3,4 167A1409 167-1602 701063
Spark Plug 167-4 167- Champ H8C***
Air Filter 140B640 140-1907 7-02241
Starter 191C324 191-0324 Prestolite MEO3006
Solenoid N/A 191-0433A ST103
*Electronic ignition set N/A 166-0825 Pertronics 1545**
**Ignition coil W/PRX 1545 PRX 405011

*Condenser and breaker points can be substituted for electronic ignition kit, either Onan 166-0825 or Pertronics 1545 with Pertronics PRX 405011 coil.
**Pertronics electronic ignition must be used with Pertronics coil
***Champion RH8C plugs should be used with replacement wires without noise suppression plug boots.

This is for an Onan 12JC generator circa 1969 with a Studebaker engine. Other models/years may vary.  The other issue with this unit is there is no supervisory monitoring and control.  There is no oil pressure loss, overheat or overcrank faults.  This is why the starter solenoid failed.  To remedy that situation, I started to design a better control circuit.  Then I looked around on the inner tubes and found somebody had already done this.  DynaGen makes the GSC400p which has can monitor oil pressure, engine temperature, frequency, engine RPM, hours, voltage and current.  It can fault for any out of tolerance condition, as programmed by the user.

Retrofit generator controller

Retrofit generator controller

I plan to install this in the original control box, leaving the original control circuit intact by using the remote start/stop connections.  I keep the original remote/start/stop switch and hand crank switch in place for use if the fancy controller fails.

Better Times at WICC transmitter site

The WICC transmitter site, Pleasure Beach in Bridgeport, has been cut off from normal access since the bridge to the island burned in 1996.  Since that time, access has been by boat with a 0.93 mile walk from the dock to the transmitter building.

Last summer, LVI Construction, under contract from the Town of Stratford, put in a temporary road and began removing the burned out cottages.  While that road is in place, the radio station has been able to access the site and get many important things accomplished.  These include:

  • Replacing the vandal damaged top beacon on the South tower
  • Removing several decades worth of stored crap, garbage, obsolete and unused equipment
  • Repair the electrical service to the building
  • Replace the generator transfer switch
  • Repair the Sonitrol building alarm
  • Replace the old Onan Generator
  • Have the power company replace the 3 phase circuit from the point where the under water cables come ashore to the transmitter building.

All of these projects should greatly improve the reliability of the station.  This should make Bill, happy, who appears to have a WICC chip implanted in his brain because every time the carrier is interrupted he posts about it on the radio-info.com website.

The biggest issue with the site was the utility feed from the shore to the transmitter building.  The original circuit was installed in 1936 when the station moved to the island.  It was old and the poles were all rotting and had horizontal cross arms.  Ospreys especially like the horizontal cross arms as they made good nesting spots.  That is, until the nest shorts out one of the phases catches on fire and burns the top of the pole off.  This has happened several times over the years causing many hours of off air time.

WICC new utility service

WICC new utility service

United Illuminating, the local utility company, was very cooperative and installed new utility poles, wires, breakers and transformers, this time with a vertical phase arrangement, which should keep the Ospreys off of them.  Additionally, the cottage removal project included installing Osprey nesting poles.

Pleasure beach cottages removed

Pleasure beach cottages removed

With almost all of the cottages now removed, the area looks much better than before.  Actually, it should be a nice nature preserve  and hopefully, the absence of the buildings might reduce the number of vandals in the area.  The work is almost done, so the road is about to be taken up. This means we need to wrap up the work out there, so the final push is on.

WICC transmitter building

WICC transmitter building

In the last three weeks, 10 truck loads of junk have been hauled out of the transmitter building and generator shack.   Over 1,500 pounds of scrap steel, 640 pounds of insulated wire, 2,000 pounds of particle board furniture, old t-shirts  and hats (something called “Taste of Bridgeport” which, if anyone knows what that was let me know), old propane tanks, batteries, etc.  We also managed to fix the fence and gate in front of the building, cut down the over grown yew bushes and bittersweet vines.

Transfer Switch

Transfer Switch

The old Kolher transfer switch was also an issue.  There was no place to mount a new switch inside and mounting one outside is out of the question, so the guts from the Kohler switch were removed and replace with an ASCO unit.  This was done in the summer of 2009.  The breaker on the right side is the main service disconnect for the building, which was installed in September.

Onan 12JC 4R air cooled generator

Onan 12 KW 12JC 4R air cooled generator, removed from service

Today, it was time to replace the Onan propane generator.  The old generator is an Onan 12JC-4R air cooled propane unit which was installed on April 4, 1969 at a cost of $1,545.00 new.  For many years, this unit gave reliable service, but it has many, many hours on it and it lacks the fault/self control circuits needed for remote (read desolate) operation.  Several times over the last few years, the generator would run out of gas or the propane tank would freeze up and the starter would crank until it burned out.

It was cold out on the island, with temperatures in the twenties and a bitter west wind blowing right into the generator shack.  All of this conspired to make  working conditions difficult.  Wind chill readings were in the single digits all day long, and in spite of long johns and extra layers, by 3 pm I was shivering and even several hours after coming inside, I still feel cold.

Using tractor to move new generator

Using tractor to move new generator

The new generator is an Cummins/Onan 20GGMA which is rated for 20 KW.  We used a John Deere bucket tractor to move the generator from the flat bed truck to the generator building, then push it inside.  The old generator wiring to the transfer switch was reused, but a piece of flex was used to connect to the generator instead of the solid conduit.  The building fan was also wired up so that it will run whenever the generator is running.

The generator load with all possible things switched on  and the transmitter running at full power is about 12,000 watts, but this would mean the air conditioner and tower lights were on during the daytime.  More likely, the transmitter will be at low power when the tower lights are on and the AC will be intermittent on/off at night.  At full load, this generator uses slightly less than 2 gallons of propane per hour.  At half load, I’d estimate that to be 1.4 or so gallons.

Cummins Onan generator in new home

100 pound propane gas tanks

100 pound propane gas tanks

HOCON gas came out and connected six 100 pound propane tanks in series, which should prevent tank icing.  Propane weights about 4.11 pounds per gallon, therefore the fuel supply should last about 100 hours, or 4.5 days, give or take.  Why 100 pound tanks?  Because we will have to shuffle them back and forth between the dock and the generator shed, a journey of about one mile, in a cart.  Anything larger would be impossible to deal with.  Even so, refilling the propane will be a 2 person job and will likely take all day.

The 100 amp fuse

I found this fuse in an old electrical panel that we were removing from the WICC generator shed.  This was the original service entrance for the site as it was built in 1932 or so.  The generator shed had a manual three pole two position transfer switch, which was fine back in the day that a licensed transmitter engineer was on site whenever the station was on the air.  The generator, according to the old records I could find, was an upright 2 cylinder slow speed engine with a belt driven generator.  They were mounted on concrete pads about 5 feet apart.  The motor had a big fly wheel that was hand cranked with the compression off.  Once a good head of speed was built up with the hand crank, the compression lever was thrown and the engine would start.  Alternatively, the procedure was tried again.

That was all replaced in 1971 when the transmitter site underwent a major upgrade.  The old electrical service was bypassed and abandoned in place when a new meter and panel was installed on the transmitter building.  The old service seems to have been frozen in time, untouched for forty years.

Kirkman Engineering renewable fuse

Kirkman Engineering renewable fuse

This fuse is a Kirkman Engineering Company and has a manufacture date stamp of January 1945.  It is a replaceable link AKA “renewable” fuse.  In has “peak lag” links, which I think would be called “slow blow” today.  Peak lag may also indicate a large inductive load, which would lower the power factor.  What I find interesting is that someone, once upon a time, placed two 100 amp links in parallel, then crossed the 100 AMP label out and wrote “200” on the fuse body.

Kirkman Engineering fuse links

Kirkman Engineering fuse links

The problem with this setup, the panel and wiring were all rated for 100 amps.  The wiring is #4 copper, and the transfer panel and switch are clearly labeled “100 amp, 3 pole.”  It would appear that the finger stock holding the upper blade in place was loose, causing the fuse body to overheat.  In fact, it became so heated that the case and the wood fiber holder are charred and missing.

Fortunately, there was never a fire.

The reason why we use properly sized fuses and breakers.

Cracked Battery Terminal

File under some new everyday. Yesterday, there was an area wide power outage in Woodstock, NY. The backup generator failed to start, however, WDST remained on the air until the UPS batteries ran out several hours later.  Then my cellphone rang.  Alas, yet another Sunday on the job.

Upon arrival, I found the power had just come back on, so the DJ (yes, there was a live person in the studio, on Sunday) was restarting the NextGen system and getting the station back on the air.  I restarted the rest of the servers, streaming computers and what not.  While I was there, I figured I might as well see why the generator didn’t run.

Pressing the start switch led to the “click, click, click, click…” which normally indicates the battery is dead.  Deciding that I should dig a little deeper, I got the volt meter out.  Battery voltage, no load 13.8 volts.  A normal reading.  Flick the starter switch and measure the battery voltage again, under load 13.7 volts.  Hmmmm, now that is not what I suspected.  If the battery were bad, the voltage should drop down under load.

Cracked Battery Terminal

Cracked Battery Terminal

I grabbed the negative cable and it came off in my hand.  Another one of those “ah ha!” moments.  Upon closer examination, the terminal connector is cracked in half.

Cracked Battery Terminal

Cracked Battery Terminal

I went to the local Ford dealership and bought a heavy duty truck battery cable.  Since the battery itself is six years old, I decided to bring it and have it checked, and sure enough, the battery was going bad too.  Rather than suffer through another power outage without generator, I went ahead and replaced the battery.

Why the terminal cracked in half in the first place, I don’t know.  Perhaps it was over tightened, or some type of manufacturing defect.

Care and feeding of Propane Fueled Generators

Broadcasters historically have tried to remain on the air during emergency events like major storms, earthquakes and other forces of nature.  Often times, commercial power is interrupted, and thus, the backup power generator is installed.  Propane powered generators for medium duty (powers up to 45 KW) are popular because of the decreased environmental hazards, availability and expense of fuel, ease of maintenance and repair.  This sized generator can run the critical loads of a studio facility or a transmitter site with TPO’s between 5 and 10 KW.

Katolight 45 KW generator w/outside housing

Katolight 45 KW generator w/outside housing

Most propane generators use a gasoline engine modified to use propane.  These generators can also use natural gas, however, because natural gas has slightly less energy, the generator’s service rating is reduced by about 10 percent.

Ford inline 6 cylinder engine

Ford inline 6 cylinder engine

The biggest error I consistently see with propane generators is improper fuel tank sizing.  It might seem just fine to plop a 500 gallon tank down next to a 45 KW generator and expect everything to be just fine.  500 Gallons may sound like a lot of fuel, but the more important consideration is tank vaporization, that is to say, how fast can the liquid propane can be removed from the tank for use.  Propane fuel companies should be able to sizing these things correctly, most of them have books and charts that tell what capacities and sizes are needed.  However, as a general trouble shoot guide, the following information is provided:

Generator manufactures will specify how many BTU per hour a generator will require under full load. If not, these are some conservative rules of thumb:

  • For every 1 KW of electrical generation, 2 horsepower of engine is needed*
  • Under full load, each horsepower will consume 10,000 BTU per hour*
  • Propane has 92,000 BTU per gallon
  • Propane weighs 4.2 pounds per gallon

*Note: These are not the figures you will find in your engineering handbooks, they are adjusted for generator winding and engine efficiency.

Propane Tank Vaporization Rates (Continuous BTU/hr vs volume at tank temperature):

Size propane in a tank (assumes 1/3 full) Maximum continuous BTU/hr at degrees F
20° 40° 60° 70°
120 129,600 188,640 247,680 308,160 338,400
150 146,880 213,790 280,700 349,200 383,520
250 253,800 369,400 485,000 603,480 662,700
325 321,300 467,670 614,000 763,900 838,900
500 396,270 567,700 757,300 942,240 1,034,700
1000 708,480 1,031,230 1,353,980 1,684,600 1,849,900
1450 816,120 1,253,400 1,645,690 2,047,550 2,248,480

Note: Tank vaporization depends on fuel level, tank temperature and withdrawal rate.  The above chart is a conservative generalization and represents a safe median value.

If a propane tank cannot vaporize fuel fast enough, the generator will begin to run lean, eventually overheat and shutdown. The vaporization rate depends on the tank temperature, which drops as fuel is withdrawn.  For the above cited 45 KW generator called to duty after a sever winter storm, the tank would need to vaporize: 45KW x 2 HP = 90 HP.  90 HP x 10,000 BTU/hr = 900,000 btu/hr.  A 500 gallon tank is too small for that size generator.

As the tank temperature drops a propane tank can develop frost on the outside of the tank, even on a hot summer day, which compounds the problem.

The correct size tank for a 45 KW generator is a 1000 gallons.  This can also be two five hundred gallon tanks connected in parallel via a high pressure line.

45 KW propane generator with two 500 gallon tanks

45 KW propane generator with two 500 gallon tanks

Also note, the generator’s radiator is facing the tanks so that when the unit is running, hot air is blowing on the tanks, warming them up.  This particular generator is about 25 years old, which is why it looks a little worn.  It still carries the load and mechanically is in sound condition.

Most propane fuel systems have two regulators; one high pressure regulator on the tank, which takes the variable tank pressure and steps it down to about 10 PSI, and the vaporizor which steps the pressure down to a few ounces per square inch (or inches water column) and adds air creating propane gas for the generator to burn.

High pressure propane tank regulator

High pressure propane tank regulator

It is important that the vaporizer be mounted above the snow line and that there is a little screen on the air intake, otherwise mud wasps will build a nest in the air intake and the next time the generator is required to run, it won’t start.

Low pressure propane regulator/vaporizer

Low pressure propane regulator/vaporizer

Fuel piping is also a concern, if the low pressure lines are not large enough to handle the required BTU, the generator will run lean, creating the same problems of an improperly sized tank.  Different piping has different capacities, see the following charts:

Propane steel pipe sizing diagram

Propane Schedule 40 steel pipe sizing diagram

Propane copper pipe sizing diagram

Propane copper-K pipe sizing diagram

Assumes pressure less than 1.5 PSI, one MBTU is equal to 1,000 BTU per hour.

Once the generator is installed, maintenance is required.  As a minimum:

  • Exercise engine bi weekly for 15 minutes. Propane generators do not need to run under load.
  • Check fuel, oil, and antifreeze levels monthly, more often if heavy use.
  • Change the oil, oil filter, air filter, check antifreeze freeze point, battery electrolyte specific gravity yearly
  • Change out belts and hoses as needed, pay close attention to the block heater hose, this is where leaks often develop
  • Clean out mice nests and droppings as needed

Mice love generators.

When batteries explode

This is a picture of an exploded battery on a 45 KW backup generator:

850 CCA battery exploded during generator startup

850 CCA battery exploded during generator startup

This happened during a thunderstorm.  The smoking crew was out on the back porch, during a thunderstorm (you have to have your priorities I suppose) and witnessed the entire incident.  What was told to me was lightning stuck the generator.  I find that improbable, since there are many metal objects scattered around the area that are much taller.  What likely happened was lightning stuck something close by, causing the power to drop out momentarily.  This caused the generator to turn over.  The battery was likely low in electrolite, so there was an internal arc and the thing exploded in short order.

These events happend in rapid sucession, giving the illusion that lightning struck the generator.

I removed the old battery and hosed the inside of the generator out with copious amounts of water.  There is nothing that can be done about the spilled electrolite, since it was likely washed into the storm sewer during the storm.  After replacement of the battery, I tested the generator and all is well.

Axiom


A pessimist sees the glass as half empty. An optimist sees the glass as half full. The engineer sees the glass as twice the size it needs to be.

Congress shall make no law respecting an establishment of religion, or prohibiting the free exercise thereof; or abridging the freedom of speech, or of the press; or the right of the people peaceably to assemble, and to petition the Government for a redress of grievances.
~1st amendment to the United States Constitution

Any society that would give up a little liberty to gain a little security will deserve neither and lose both.
~Benjamin Franklin

The individual has always had to struggle to keep from being overwhelmed by the tribe. To be your own man is hard business. If you try it, you will be lonely often, and sometimes frightened. But no price is too high to pay for the privilege of owning yourself.
~Rudyard Kipling

Everyone has the right to freedom of opinion and expression; this right includes the freedom to hold opinions without interference and to seek, receive and impart information and ideas through any media and regardless of frontiers
~Universal Declaration Of Human Rights, Article 19

...radio was discovered, and not invented, and that these frequencies and principles were always in existence long before man was aware of them. Therefore, no one owns them. They are there as free as sunlight, which is a higher frequency form of the same energy.
~Alan Weiner

Free counters!