January 2019
M T W T F S S
« Dec    
 123456
78910111213
14151617181920
21222324252627
28293031  

Archives

Categories

Transmitter site re-hab

One of the reasons for the recent lack of posts; I have been busy rehabilitating several transmitter sites for various broadcasting companies. These are mostly FM transmitter sites and vary in power from one kilowatt to twenty six kilowatts ERP.  I enjoy project work, but I have been driving hither and yon, racking up 27,000 miles on my new car since last August.

Subaru Crosstrek XV at remote transmitter site, somewhere in rural New York

Subaru Crosstrek XV at remote transmitter site, somewhere in rural New York

So, here is one transmitter site that I just finished; WFLY, Albany, New York.  Removed Collins 831F2 transmitter which was functioning as a backup and installed new Broadcast Electronics FM20S.  The Continental 816R2 is becoming a little bit long in the tooth for a main transmitter, being new in 1986.  Thus, it was time to install a new unit, and I like the Broadcast Electronics solid state and tube designs.  With the BE AM and FM solid state units, their simplicity is their beauty.  We service many BE transmitters, some are thirty years old and are still supported by the manufacturer.

WFLY transmitter building, New Scotland, NY

WFLY transmitter building, New Scotland, NY

The BE FM20S transmitter is actually two FM10S cabinets combined with one controller.  Each cabinet requires a 100 amp three phase mains connection.  This station’s TPO is 11.5 KW, so there is plenty of head room in case the owner’s ever want to install HD Radio or replace the three bay antenna with a two bay unit.

WFLY main transmitter, Broadcast Electronics FM20S

WFLY main transmitter, Broadcast Electronics FM20S

In transmitter cabinet two, above the exciter is room for HD equipment.

BE FM20S exciter housing

BE FM20S exciter housing

I also reworked the coax switches to provide easier implementation of the backup transmitter.  Basically, the main transmitter is on the main antenna, the backup transmitter is on the backup antenna.  We can move the second coax switch to test the backup into the dummy load.  We can move the first coax switch to change antenna feeds.

WFLY backup and main transmitters

WFLY backup and main transmitters

Pretty standard setup.

WFLY RF path diagram

WFLY RF path diagram

We moved the Collins 831F2 from Albany to here to replace another, dead Collins unit at WKXZ in Norwich, New York.  This transmitter is forty years old, but still runs reliably.  Of course, doing this work in the dead of winter added a degree of difficulty to the job, as the roads to both the WFLY and the WKXZ transmitter sites needed work to make them passable for a moving truck.  In the end, we used a skid steer with forks on it to get the transmitter up the final hill and into the small WKXZ transmitter building.

Collins 831F2 transmitter, WKXZ, Norwich NY

Collins 831F2 transmitter, WKXZ, Norwich NY

Collins 831F2 transmitter

Collins 831F2 transmitter

The WKXZ transmitter building interior is floor space challenged. It is located next to a former TELCO microwave site which has a guyed tower.

The IP enabled transmitter site

This is a project that we have been working on, weather permitting, for the last month. Basically, it called for installing this Nautel VS2.5 transmitter, mod monitor, remote control and audio processor:

WEXT Nautel VS2.5, Amsterdam, NY

WEXT Nautel VS2.5, Amsterdam, NY

The common thread here; each piece of new equipment has a web interface.  More and more, HTTP is being used to monitor and control transmitters, audio processors, STL’s, consoles, satellite receivers, etc.  Port 80 services (HTTP) are nice, but I think I would prefer port 443 (HTTPS).  Secure HTTP has a whole set of additional requirements, so it is understandable why manufactures do not use it.  However, it is only a matter of time until some problem arises…

Nautel VS2.5 Web AUI

Nautel VS2.5 Web AUI

Burk ARC Plus web interface

Burk ARC Plus web interface

Telos Omnia One web interface

Telos Omnia One web interface

I like the Nautel AUI, especially for any station running HD Radio.  In this setup, there are multiple control and monitoring points available via the LAN at the studio.  The Omnia One is set up to take the AES input from the Harris IP Link as the main feed and fail over to the analog output from the Inno Tuner as a backup.  The Inno is set to WMHT-FM which broadcasts the WEXT format on the HD-2 channel.

This setup is pretty slick, especially in light of the equipment it is replacing:

Harris FM2.5H3, WEXT Amsterdam, New York

Harris FM2.5H3, WEXT Amsterdam, New York

Anyone feeling Nostalgic for a Harris FM2.5H3?

No?

I didn’t think so.

Winter! Is upon us….

What better time to take the gondola to K-1? None, none at all.  We do work for the two radio stations that are on the peak of Mount Killington, near Rutland, Vermont.  In the summer, usually we can drive up there in a four wheel drive truck.  In the winter, the gondola is the way to go.  On this day, there was a 48-56 inch base, light north winds and air temperature around 10° F (-12° C) .

This is not my video, I did not have enough memory on my SIM card to film a video and I didn’t bring my expensive camera. However, this is a good example of the ride:

Not a bad way to get to a transmitter site, all things considered.

Ride up to Killington Peak

Ride up to Killington Peak

View from Killington Peak

View from Killington Peak

View from Killington Peak

Transmitter buildings on Killington Peak

View from Killington Peak

View from Killington Peak

View from Killington Peak

Tower from Killington Peak

Killington STL dishes

Killington STL dishes

ERI antenna, WZRT/WJJR Killington VT

ERI antenna, WZRT/WJJR Killington VT

The reason for the trip today; repair work on the Nautel VS2.5 transmitter. All three power supplies and the power supply summing board needed to be replaced.

MPX over IP

In the progression from Circuit Switched Data to Packet Switched Data, I can think of many different applications for something like this:

FMC01 MPX to IP CODEC

FMC01 MPX to IP CODEC

The FMC01 MPX to IP encoder can be used for multi-point distribution (multi frequency or same frequency network) of FM Composite audio, or as a backup solution over a LAN bridge, LAN extension, or public network.  I can think of several advantages of using this for a backup when composite analog STL’s are in use.  There are many compelling reasons to extend the LAN to the transmitter site these days; Transmitter control and monitoring, security cameras, office phone system extensions, internet access, backup audio, etc.  I would think, any type of critical infrastructure (e.g. STL) over a wireless IP LAN extension should be over a licensed system.  In the United States, the 3.6 GHz WLAN (802.11y) requires coordination and licensing, however, the way the rules are set up, the license process is greatly simplified over FCC Part 74 or 101 applications.

Another similar CODEC is the Sigmacom Broadcast EtherMPX.

Sigmacom Broadcast EtherMPX CODEC

Sigmacom Broadcast EtherMPX CODEC

Features include:
• Transparent Analog or Digital MPX (MPX over AES), or two discrete L/R channels (analog or AES).
• Built-in MPX SFN support with PTP sync (up to 6.000km in basic version). No GPS receivers!
• Unicast or Multicast operation to feed unlimited number of FM transmitters with MPX from one encoder.
• Linear uncompressed PCM 24-bit audio.
• Very low audio latency: 2,5mS in MPX mode.
• Perfect match with Sigmacom DDS-30 Exciter with Digital MPX input.
• Can be used with high quality 802.11a/n Ethernet links.
• DC coupled, balanced Analog inputs & outputs with -130dBc noise floor.
• No modulation overshoots due compression or AC capacitor coupling.
• Decoder provides simultaneously Analog & Digital output for transmitter redundancy.
• Aux RS232 serial transparent link, Studio to Transmitter.
• Auto switchover to Analog input when Digital signal is lost.
• Centralized remote control & management software

One last thought; separating the CODEC from the radio seems to be a good idea. It allows for greater flexibility and redundancy. Using an MPX type STL allows sensitive air chain processing equipment to be installed at the studio instead of the transmitter site.

The Shively 6810 FM antenna

Update, W232AL:

The news is out; this is for the new “WFAS-FM” which is actually W232AL retransmitting the WPLJ HD-2 channel.  What do they call translators these days… Metro stations?  Something like that.  Anyway, quite a bit of work went into getting this off the ground before the start of Labor Day weekend and here it is!

We are currently working on a project that involves installing a Shively 6810 FM antenna. Since few people get to see these things up close, I thought I would post a few pictures.

This particular antenna is a four bay, half wave spaced directional antenna.  It is going to be side mounted on a 430 foot tower.  To do this, we had to lower the AM skirt wires by about fifteen feet and retune the AM antenna.

This Shively antenna came in seventeen boxes with sixty four pages of assembly instructions.  There are many parts and they need to be assembled in the order specified, otherwise things get in the way.  We found that Shively provided many extra bolts, washers, O rings, etc because things get lost.  Also, all of the parasitic locations and bay orientations were clearly marked.  One thing that the tower crew said; always check the allen screws and other hardware on the elements before installing the RADOMES.

Shively 6810 installing elements

Shively 6810 installing elements

Since this is a half wave antenna, the radiating elements are 180 degrees out of phase, bay to bay.

Shively 6810 mounting brackets

Shively 6810 mounting brackets

Stainless steel tower leg mounting brackets.

Assembled element with RADOME.  This is the top bay with the gas pressure release valve

Assembled element with RADOME. This is the top bay with the gas pressure release valve

Shively 6810 top bays staged for hoist

Shively 6810 top bays staged for hoist

We hoisted two bays at a time. The top bays are ready to go up.

Shively 6810 top two bays lift

Shively 6810 top two bays lift

The bottom two bays were hoisted next.

Shively 6810 four bays installed

Shively 6810 four bays installed

This is the antenna installed, less the tuning section and parasitic elements. It is tilted off axis from the tower by design due to its highly directional nature.

The transmission line was installed and we swept the antenna. I will snap a few final pictures once the transmitter is installed, which will happen tomorrow.

Updated Pictures: Here are a few pictures of the finalized installation:

W232AL antenna, new installation on WFAS AM tower

W232AL antenna, new installation on WFAS AM tower

The fully installed antenna, tuning unit and transmission line. We did some program testing, made sure the audio sounded good, then the station was signed on. We also had to lower the AM station’s skirt a few feet and retune the ATU. Actually, the ATU needed to be reconfigured because the shut leg had been disconnected and there was a capacitor added to the circuit after the base current meter.  All of that was fixed, along with a few other things…

W232AL transmitter, a BW Broadcast TX300 V2

W232AL transmitter, a BW Broadcast TX300 V2

The W232AL transmitter is a BW Broadcast TX300 V2. These little transmitter are packed with features like a web interface, on board audio processing, etc. They are pretty neat.

Its Friday, time to go home!

It’s Friday, time to go home!

The tower crew from Northeast Towers did a great job, as they always do.

The rotary phase maker

I alluded to this in an earlier post: Open Delta three phase service.  Some transmitter sites are fairly remote and three phase power is not available.  Occasionally, with lower powered radio stations, this is acceptable because those transmitters can be configured to run on single phase power.  However, almost any transmitter above five kilowatts or so will require three phase power.  This is the case at the WQBJ transmitter site in Palatine Bridge, NY.  The site is located in the middle of farm land and only has single phase service.  The nearest three phase service is several miles away and the utility company wants several hundred thousand dollars to upgrade the line.

WQBJ transmitter site electrical service

WQBJ transmitter site electrical service

The station is a class B FM with a six bay full wave spaced antenna.  Even so, the TPO is 17 KW, which makes some type of three phase service a requirement.

WQBJ six bay Shively 6810 antenna

WQBJ six bay Shively 6810 antenna

The main transmitter is a Broadcast Electronics FM30B, which is now 25 years old.

WQBJ main transmitter, Broadcast Electronics FM30B

WQBJ main transmitter, Broadcast Electronics FM30B

The backup transmitter is a CSI FM20T, which is almost forty years old.

WQBJ backup transmitter, CSI FM20T

WQBJ backup transmitter, CSI FM20T

Rather than do an open delta service, which is not desirable for several reasons, both transmitters have their own rotary phase makers.  From a reliability and redundancy standpoint, this is the right way to equip this site.  The rotary phase makers are essentially a motor generator combination which takes the split phase power and generates a third phase.

WQBJ phasemaster, backup three phase converter

WQBJ Phasemaster type T, backup three phase converter

Phasemaster parallel connection diagram

Phasemaster parallel connection diagram

The phasemaster is is a 40 KVA unit and is connected to the backup CSI transmitter

WQBJ Roto Phase, main three phase rotary converter

WQBJ ARCO Roto Phase, main three phase rotary converter

The Roto Phase unit for the main transmitter is actually two 40 KVA units connected in parallel through dry core isolation transformers.  Incidentally, the Roto Phase units need to have their bearings changed every ten years or so.  This requires the units be disconnected, placed up on their end.  To get the old bearing out, the housing has to be cooled with liquid CO2.  Both units are due for new bearings soon, which should be a pleasant job indeed.

Repairing the Nautel VS2.5 transmitter

The newish Nautel VS2.5 transmitter installed at WJJR had an RF module failure. This particular model transmitter does not have slide in RF modules as other Nautel transmitters do.  To fix this transmitter, it has to be pulled out of the rack, flipped over and opened from the bottom. The module replacement is very straight forward, there are five solder pads that connect to wires carrying the input, output, power supply and bias voltages.

Nautel VS2.5 transmitter RF modules and combiner

Nautel VS2.5 transmitter RF modules and combiner

The troubleshooting guide gives good instructions on how to check the PA MOSFETS with a DVM. I found that 1/2 of the device in PA1 was bad:

Schematic Diagram, NAPA31

Schematic Diagram, NAPA31

All in all, not a very hard repair. This was under warranty, so a replacement RF pallet was sent to the station without charge. The problem is more about where the transmitter is located:

Killington Mountain, Killington, VT

Killington Mountain, Killington, VT

Killington Peak is the second tallest mountain in Vermont, topping out at 4,235 feet (1,291 meters). In the winter, one can take the chair lift to the top. In the summer, the road is drivable with a four wheel drive. In those in between months, access to the top can be very tricky at best. We had a pretty wet spring this year, so the roads up the mountain are just now becoming passable for vehicles.

Even after reaching the parking lot, there is still a 10 minute walk to the peak, another 200 or so feet up a steep, rocky trail.

Further complicating things, this transmitter is wedged into this little shack, which holds; a BE FM3.5A transmitter (defunct WJJR), a Harris HT3 transmitter (WZRT), an ERI combiner, two racks of equipment (STL’s, Exciters, remote controls, etc) a backup QEI transmitter, an Onan generator transfer switch:

Killington Peak fire tower, WJJR WZRT transmitter building

Killington Peak fire tower, WJJR WZRT transmitter building

Both stations run into this ERI half wave spaced antenna:

WJJR WZRT ERI antenna

WJJR WZRT ERI antenna

It is very tight in this transmitter room. There is a new tower on Killington Peak, which is still under construction. At some point, the plan is to move into the larger building next to the new tower.

Killington Peak tower

Killington Peak tower

On a clear day, the view from the top is spectacular. On this day, the peak was in the clouds, so not so much:

Killington Peak view

Killington Peak view

It is a great site, the HAAT is 2590 feet (790 meters) and the stations carry forever on relatively low power outputs.

The Shively 6710 Antenna

Shively 6710-1 FM antenna

Shively 6710-1 FM antenna

Perhaps that is one Shively Antenna that you haven’t heard of. They were an odd-ball combination of a horizontally polarized antenna with an adjustable vertical element. This design allowed the station to adjust the ratio of horizontal to vertical power from a range of 1:1 to about 4:1 (H:V).  Why would this be a desirable feature?

Back in the early days of FM broadcasting, almost all stations had horizontally polarized antennas.  This system worked remarkably well, stations could broadcast at moderate power levels over fairly long, line of sight (or mostly line of sight) paths.  Most FM receivers were stationary units installed in people’s homes often with outdoor antennas.

It was not until the late 1960’s and early 1970’s that FM radio receivers became a stock option in most low and mid cost automobiles.  It was then that a slight problem with FM broadcasting was discovered;  car antennas are vertically polarized.  People driving around in their new machines found that the FM reception was not all that great.  Stations began adding a vertical component to their signal to help improve the mobile reception situation.

I found this Shively Brochure in a file cabinet drawer at the WFLY transmitter site.  This model antenna was ordered and installed by that station in 1970.  It had a 3:1 horizontal to vertical ratio.  Why not install a fully circularly polarized antenna?  Because often that necessitated installing a new, more powerful transmitter.   Every watt of power taken from the horizontal plane and added to the vertical plane reduced the ERP by that much and had to be made up with more transmitter power output.  Often times, the ratio of H:V power would be adjusted to take up whatever headroom there was in the transmitter and the station would run that way until the next transmitter replacement cycle.

I found the remains of this antenna in the woods, north east of the tower.

Shively 6710 antenna section

Shively 6710 antenna section

This section looks pretty well destroyed.  It is probably better to dispose of these type things by scraping, rather than dumping them in the woods.  While there is not a lot of scrap value to this unit, it can become an attractive nuisance copper thieves and other vandals if it is left laying about.

It is a strange looking piece of kit, a sort of make do until the situation could be fully rectified.  I think this antenna was in service until 1986 or 87 when it was replaced with a circularly polarized ERI.

Planning the FM Stereo Installation

Broadcast Engineering, December 1963, Vol 5 no 12

Broadcast Engineering, December 1963, Vol 5 no 12

This is a reprint of an article by the same title first published in the December 1963 “Broadcast Engineering” magazine; volume 5, number 12. By George W. Yazell:

In planning a new installation, the broadcast station engineer will be called upon to evaluate the products of various manufacturers before an order is placed for new FM stereo station equipment. In preparing his recommendation, the engineer will review descriptive literature, advertisements, and instruction books. He will seek information and advice from his consultant, other station engineers with stereo experience, and sales representatives of broadcast equipment manufacturers. His thinking may also be influenced by magazine articles and advertisements.

It is unfortunate, but true, that during the engineer’s survey he will encounter many conflicting opinions and claims. Some “advisors” may go so far as to imply that their system of stereo signal generation is the only one worthy of consideration, and all the rest have so many shortcomings as to be impractical or even unworkable.

The simple truth is that any manufacturer offering a transmitter or associated device for sale to broadcast stations must obtain FCC type acceptance. In doing so, complete and authentic test data is submitted for the Commission’s review and approval. Type acceptance by the FCC is your assurance that the equipment will meet certain specifications.

Thus you can either draw straws, or accept the views of the “advisor” with the most forceful opinion and still feel safe that the equipment you recommend will work. A more practical solution would be to prepare a list of equipment and features you require, with careful attention to needs peculiar to your own station; then select the equipment which most nearly matches your requirements.

List What You Have

The first step is to list and evaluate any equipment, facilities, and assets already available for the proposed installation – even if it is only a construction permit, a bank account, and a plan of operations. Some items to consider include:

  1. Ask management for a budget. This is probably the most significant factor in your recommendation. You should set both a practical budget and an absolute top limit. If you find it impossible to do the job within the budget limitations, do not hesitate to say so. Point out that stereo is a two channel system and that in addition to special transmitting equipment, the studio installation will require two of each amplifier, loudspeaker, telephone line, etc. Therefore, a stereo installation will cost considerably more than monophonic facilities.
  2. Review the program plans for the station. The quantity, complexity, and flexibility of the audio equipment selected must adequately meet these needs, with some reserve facilities for future expansion.
  3. You may presently have an FM, AM, or TV station a combination of these. In this case you can probably count on using existing studio facilities, some of the technical equipment, the tower, remote control facilities, and technical manpower.
  4. Consider the abilities of your technical staff. You may be the only engineer, or may have available a large staff of technical personnel. In any event, select equipment having circuits and components your technicians can install and maintain.
  5. Survey the supply situation. Determine the location and stock capabilities of electronic supply houses in your area. Keep in mind that any electronic component must eventually fail; and an inexpensive component can cost hundreds of dollars if you are “off the air” several days while a replacement is being flown in from a distant source of supply. If the supply picture is discouraging, you can best protect yourself by selecting practical equipment employing readily available components – and ordering an adequate supply of spares for parts you cannot obtain locally.

List your needs

Your next step is to prepare as complete a list as possible of the total equipment requirements.

Broadcast Engineering, Typical Stereo diagram

Broadcast Engineering, Typical Stereo diagram

Sketch a block diagram of your proposed layout (Fig. 3). Then prepare a chart of all the equipment you will need with space provided for prices, data, and notes on each device. As you prepare these charts several things will become evident:

  1. You will probably discover more equipment is needed than you originally anticipated.
  2. In determining what must be purchased, you must carefully integrate your needs with equipment now on hand.
  3. Your ultimate decision will depend on many interacting factors rather than on one outstanding feature of a particular device.
  4. It will be wise to purchase as many items as possible from a single source to take advantage of: compatability of equipment that is designed to work together as a system, coordinated shipments and service, possible lower cost because of quantity purchase and -if required- simpler finance arrangements.

Making a Decision

After considering the points outlined above, and making the lists, you are ready to select equipment.

If the budget is limited you may investigate the possibility of some used equipment. However, since today’s FCC Stereo Specifications were only established as recently as 1961, there will be little used equipment available. In the majority of cases, converting old monophonic equipment will be difficult, costly, and the end result may be less than satisfactory. Old “dual channel” audio consoles have been successfully converted, but in the process usually require almost complete rebuilding. It is necessary to install dual faders, correct phase differences, and balance gain between channels.

Used FM transmitters are frequently advertised, but many are left over from the early days of FM. Some transmitter manufacturers of the late ’40s are no longer in business. Replacement tubes and parts are difficult, if not impossible, to get. Some older transmitters lack stability and some contribute to degradation of stereo separation, because they do not maintain the proper phase relationship between upper and lower sidebands. If such a transmitter is to be used, it probably will be necessary to purchase a new exciter and, of course, a stereo generator.

Since stereo listeners are a discriminating and critical audience, audio equipment should be chosen with care. It will be wise to settle for only the finest professional stereo turntable and tape equipment. It is better to have the minimum requirements of excellent equipment than a control room crowded with “make do” items.

Stereo consoles are available with a wide range of prices and facilities. Some offer stereo channels only for record and tape inputs, while the more complete models even make provision for stereo network and remote circuits. Much of today’s programming is on records and tapes, but regional “off -the -air relay” stereo networks are springing up. Stereo microphone facilities are a must if you want your locally produced commercials to sound as impressive as your stereophonic music.

Current models of FM transmitters are highly efficient, trouble free, and easily remote controlled. All FM transmitters follow one pattern- a basic exciter and a number of amplifier stages to produce the required power output. The power amplifiers in the various models are somewhat similar, except in high power transmitters (20 kw and up).

A wide variety of FM exciters and stereo generators is offered, and this is one area in which confusion might occur. (Again, it should be pointed out that all these units are subject to FCC type acceptance.) A typical exciter and stereo /SCA generating system is shown in Fig. 5. The block diagram explains the signal path and function of the various circuits.

Broadcast Engineering, FM stereo exciter diagram

Broadcast Engineering, FM stereo exciter diagram

Conclusion

The selection, installation, and operation of FM multiplex stereo equipment requires the careful attention of a highly skilled technician. Installation, adjustment, and maintenance should be in exact accordance with the manufacturer’s instruction book. Following these instructions, the broadcast engineer can feel confident in planning a stereo installation that will be a pleasure to operate and a source of pride and profit.

Used by permission of the publisher; SAMS Technical Publishing, Inc.

I found a stack of these old Broadcast Engineering magazines from the early sixties when cleaning out the WUPE-FM (formerly WNMB) transmitter site.  I thought it would be interesting to see how Broadcast Engineers some 50+ years ago were planning for FM stereo.  One of the stations I worked for, WRVE (formerly WGFM) was the first station in the country to broadcast with the General Electric stereo system.  This was later adopted as the standard for FM stereo broadcasting in the US.

For more historical broadcasting publications, go to American Radio History.

WEBE pictures

WEBE is fairly unique in that its antenna is mounted on the side of a 500 foot smoke stack. I took a few pictures last winter:

WEBE Main antenna

WEBE Main antenna

This is a close up of the Antenna:

WEBE main antenna, Shively 6 bay half wave spaced

WEBE main antenna, Shively 6 bay half wave spaced, ERP 50 KW

Here is an even closer view from a different angle:

WEBE main antenna, courtesy of NECRAT

WEBE main antenna, courtesy of NECRAT

From this angle, one can see the mounting brackets and the wire mesh reflector installed on the smoke stack.  From the first picture, one can see that the 400 MW PSEG coal fired power plant puts out a lot of combustion products when on line.  Combustion is an exothermic chemical reaction which looks like this:

Hydrocarbon Fuel + Oxidizer + Nitrogen  → Heat + CO2 + H2O + NOx

Included in this are any trace elements that are found naturally in the coal that is being burned.  These include things like Mercury, Nickel, Uranium, et cetera.  These trace elements can concentrate around the smoke stack because they fall out of the particulate quickly and these plants burn a lot of coal.  The above picture was taken on a very cold day, most of what is coming out of the smoke stack is steam.

The issue for the radio station is when the particulate matter accumulates on the antenna, effectively shorting it out.  The solution was to place the RADOMES around the elements and then constantly purge the RADOMES with nitrogen.  Thus, this liquid N2 tank is vital for the operation of the radio station:

Liquid Nitrogen Tank

Liquid Nitrogen Tank

Each element of the antenna has a small hole in the feed line. N2 is fed continuously into the transmission line at a pressure of about 1.5 inches water column which then purges the RADOMES keeping any combustion products out of the RADOMES.  The N2 tank needs to be changed out every 18-21 days and weights over 650 pounds when full.

Axiom


A pessimist sees the glass as half empty. An optimist sees the glass as half full. The engineer sees the glass as twice the size it needs to be.

Congress shall make no law respecting an establishment of religion, or prohibiting the free exercise thereof; or abridging the freedom of speech, or of the press; or the right of the people peaceably to assemble, and to petition the Government for a redress of grievances.
~1st amendment to the United States Constitution

Any society that would give up a little liberty to gain a little security will deserve neither and lose both.
~Benjamin Franklin

The individual has always had to struggle to keep from being overwhelmed by the tribe. To be your own man is hard business. If you try it, you will be lonely often, and sometimes frightened. But no price is too high to pay for the privilege of owning yourself.
~Rudyard Kipling

Everyone has the right to freedom of opinion and expression; this right includes the freedom to hold opinions without interference and to seek, receive and impart information and ideas through any media and regardless of frontiers
~Universal Declaration Of Human Rights, Article 19

...radio was discovered, and not invented, and that these frequencies and principles were always in existence long before man was aware of them. Therefore, no one owns them. They are there as free as sunlight, which is a higher frequency form of the same energy.
~Alan Weiner

Free counters!