The FCC: Spectrum management in the public interest

Alternative title: Who will really benefit from all digital AM HD Radio™?

Remember when, at license renewal time, radio and TV stations played this announcement:

On (date of the last renewal grant), (station’s call letters) was granted a license by the Federal Communications Commission to serve the public interest as a public trustee until (license expiration date)…

Emphasis mine.

There seems to be a disassociation between those words and the actions of certain broadcasters who view their licenses as a matter of fact and have little regard for the public interest.  The FCC exacerbates the situation with the attitude that everything, including the entire radio frequency spectrum, is for sale to the highest bidder.  John Anderson (DIY Media) has a great article on how big business interests game federal regulators into doing what they want.  This happens in all sectors; banking, agriculture, energy, health care, media, military and so on.   There are many examples of shoddy regulators and big business gone wild over the last ten years to fully prove this theory.  If you don’t believe me, do a little research.  There is no reason to think that the FCC is different from any other federal regulatory agency.

The vast majority of mass media outlets in the US are owned by just six major corporations (see below).  Radio remains the only piece of the mass media system that has not been completely rolled up in consolidation.  Currently, there is a small number corporate radio owners who own a combined ~2,300 stations and one public broadcasting network that accounts for another ~900 stations. I include public radio here because the majority of those station’s upgrades were footed by the taxpayer though grants from the Corporation for Public Broadcasting. That leaves a majority of the approximately 8,500 radio stations that are still owned by a diversified collection of medium and small groups and individuals.

Forcing radio stations to adopt the proprietary, all digital HD Radio™ as the broadcasting standard would, in effect, drive many of those small owners and individuals out of business because of the exorbitant costs for equipment upgrades, antenna modifications, and licensing fees.  This would create a new wave of consolidation as smaller groups and single station owners sold out.  Any remaining small station owners will not have the legal wherewithal to fight against the coming waves of digital interference on both the AM (medium frequency) and FM (VHF) bands.

Therefore, the short answer to the question; who benefits from an all conversion to all digital HD Radio™ is iBquity and its investors, many of whom are found in the list of consolidated media corporations below.  Who looses? Just about everyone else; small and medium group owners, independent radio owners, listeners, communities of license, radio employees, advertisers etc. For those sitting on the fence, thinking “I’ll just do my job any everything will be just fine.”  Full implementation of HD Radio™ will destroy what is left of broadcasting in this country.  Radio is already on shaky ground as a result of product dilution, staff cuts, mediocre programing and competing media systems.  One more step backward, such as adopting a technically flawed digital system that works worse than its analog counterpart, and the remaining listeners may just say “screw this,” and abandon radio altogether.  When the last radio station is turned off, what do you think will happen to your job then?

At the big NAB Las Vegas confab, FCC commissioner Ajit Pai and to a lesser extent, Commissioner Rosenworcel, encouraged people to write or email them with their ideas on how to revitalize AM radio.  I suggest we take advantage of that invitation and tell them what HD Radio™ really is.  There is a shrinking window of opportunity to join the discourse and be heard, now is the time.

Let not any one pacify his conscience by the delusion that he can do no harm if he takes no part, and forms no opinion. Bad men need nothing more to compass their ends, than that good men should look on and do nothing. ~John Stuart Mill

What is at stake?  The future of diversified media and radio broadcasting in the US.

Sidebar: Mass Media Consolidation

Can the public trust a mass media that is owned mostly by six mega corporations to honestly and without bias report news, current events, investigate corruption, and be a government watch dog?  History says no.

Who owns the media?

Time Warner

  • Home Box Office (HBO)
  • Time Inc.
  • Turner Broadcasting System, Inc.
  • Warner Bros. Entertainment Inc.
  • CW Network (partial ownership)
  • TMZ
  • New Line Cinema
  • Time Warner Cable (spun off in 2009)
  • Cinemax
  • Cartoon Network
  • TBS
  • TNT
  • CNN
  • HLN
  • MapQuest
  • Moviefone
  • Castle Rock
  • Sports Illustrated
  • Fortune
  • Marie Claire
  • People Magazine

Walt Disney

  • ABC Television Network (8 stations owned, 200 affiliates)
  • Disney Publishing
  • ESPN Inc.
  • Disney Channel
  • Radio Disney (31 stations, 2 affiliates)
  • SOAPnet
  • A&E
  • Lifetime
  • Buena Vista Home Entertainment
  • Buena Vista Theatrical Productions
  • Buena Vista Records
  • Disney Records
  • Hollywood Records
  • Miramax Films
  • Touchstone Pictures
  • Walt Disney Pictures
  • Pixar Animation Studios
  • Buena Vista Games
  • Hyperion Books

Viacom

  • Paramount Pictures
  • Paramount Home Entertainment
  • Black Entertainment Television (BET)
  • Comedy Central
  • Country Music Television (CMT)
  • Logo
  • MTV
  • MTV Canada
  • MTV2
  • Nick Magazine
  • Nick at Nite
  • Nick Jr.
  • Nickelodeon
  • Noggin
  • Spike TV
  • The Movie Channel
  • TV Land
  • VH1

News Corporation

  • Dow Jones & Company, Inc.
  • Fox Television Stations (25 stations)
  • The New York Post
  • Fox Searchlight Pictures
  • Beliefnet
  • Fox Business Network
  • Fox Kids Europe
  • Fox News Channel
  • Fox News Radio
  • Fox Sports Net
  • Fox Television Network (175 affiliates)
  • FX
  • My Network TV
  • MySpace
  • News Limited News
  • Phoenix InfoNews Channel
  • Phoenix Movies Channel
  • Sky PerfecTV
  • Speed Channel
  • STAR TV India
  • STAR TV Taiwan
  • STAR World
  • Times Higher Education Supplement Magazine
  • Times Literary Supplement Magazine
  • Times of London
  • 20th Century Fox Home Entertainment
  • 20th Century Fox International
  • 20th Century Fox Studios
  • 20th Century Fox Television
  • BSkyB
  • DIRECTV
  • The Wall Street Journal
  • Fox Broadcasting Company
  • Fox Interactive Media
  • FOXTEL
  • HarperCollins Publishers
  • The National Geographic Channel
  • National Rugby League
  • News Interactive
  • News Outdoor
  • Radio Veronica
  • ReganBooks
  • Sky Italia
  • Sky Radio Denmark
  • Sky Radio Germany
  • Sky Radio Netherlands
  • STAR
  • Zondervan

CBS Corporation

  • CBS News
  • CBS Sports
  • CBS Television Network (16 stations owned, 200 affiliates)
  • CNET
  • Showtime
  • TV.com
  • CBS Radio Inc. (130 stations)
  • CBS Consumer Products
  • CBS Outdoor
  • CW Network (50% ownership)
  • Simon & Schuster (Pocket Books, Scribner)

NBC Universal

  • Bravo
  • CNBC
  • NBC News
  • MSNBC
  • NBC Sports
  • NBC Television Network (10 stations owned, 200 affiliates)
  • Oxygen
  • SciFi Magazine
  • Syfy (Sci Fi Channel)
  • Telemundo
  • USA Network
  • Weather Channel
  • Focus Features
  • NBC Universal Television Distribution
  • NBC Universal Television Studio
  • Paxson Communications (partial ownership)
  • Trio
  • Universal Parks & Resorts
  • Universal Pictures
  • Universal Studio Home Video

Large and medium group radio owners:

Bain Capital Partners, LLC Thomas H Lee Partners, LLC

  • Clear Channel Outdoor
  • Clear Channel Broadcasting (800 stations)
  • Premier Radio Networks
  • Radio Computer Services (RCS)

Cumulus Media (public)

  • Cumulus Broadcasting (550 stations)
  • Cumulus networks (formerly ABC Radio networks)
  • Broadcast Software International

Townsquare Media (220 stations)

Entercom (109 stations)

Salem Communications (97 stations)

Saga Communications (88 stations)

Univision (69 radio, 42 television stations)

Radio one (69 stations)

Family Broadcasting (63 stations)

Beasley Broadcast Group (47 stations)

Moody Radio (36 stations)

 

The AM HD all digital test, part IV

Continued from Part III

Profile of a successful AM radio station, March 2013: WSBS, Great Barrington, Massachusetts

Great Barrington is either a large village or a medium-sized town with a population of approximately 7,100.  There are many listenable FM and AM radio stations from Albany, NY, Pittsfield, Springfield, and Poughkeepsie, NY markets.  There are also a few local stations; WBCR-LP, WMAQ (WAMC repeater), and W254AU (WFCR repeater).  While the competition is not fierce, citizens have a variety of stations to choose from.

WSBS is a class D AM station on 860 KHz with 2,700 watts daytime power, 250 watts critical hours, and 3.9 watts night time power.

WSBS approximate daytime coverage area
WSBS AM 860 KHz approximate daytime coverage area

This is the approximate daytime coverage area for WSBS AM.  I could not find any good coverage maps online, so I made this one myself.  When I am driving, I get the station reliably to Kingston, NY, however, indoor listening may be a different matter.  With 3.9 watts ERP, nighttime coverage does not include much of the city of license.

They have a translator on 94.1 MHz, W231AK.  This is an example of when an FM translator on an AM station is a benefit to the community of license.  W231AK has recently been moved from the top of the roof of the Fairview Hospital to the WSBS AM tower.  During this move, the ERP was increased from 35 watts to 250 watts and the highly directional antenna was replaced in favor of a 2-bay half wave spaced circularly polarized Shively 6812.

W231AK old service contour
W231AK old service contour
W231AK new service contour
W231AK new service contour

Not only did the move increase the translator’s coverage area, it also reduced operating expenses for the radio station, as they no longer have to pay rent or TELCO charges.

WSBS Harris SX2.5 transmitter, courtesy of NECRAT
WSBS 860 KHz Harris SX2.5 transmitter, courtesy of NECRAT

The main transmitter for the AM station is a Harris SX2.5 .  It transmits from a 79-degree tower, the tower and antenna field are well-maintained.

WSBS 860 KHz, Great Barrington, MA tower base and ATU
WSBS 860 KHz, Great Barrington, MA tower base and ATU

The studio has a new Audioarts Air4 console, which we just finished installing last December.

WSBS Great Barrington, MA control room
WSBS Great Barrington, MA control room

More pictures are available at NECRAT.

The station has an AC music format, which is quite popular.  As the FM translator’s coverage has been quite limited until recently and there have been issues with the telephone company circuit taking the translator off the air, the majority of listeners are tuned to the AM signal.  There is a live morning show and afternoon show, the rest of the day is voice tracked with music on hard drive.  They have frequent contests and give aways.  They also do local sports, community events, news and things like live election night coverage.  In short, the station serves its community and, as demonstrated by a recent Chamber Business event at the station’s studio, the community appreciates its radio station.

There is nothing magic here; no gimmicks, IBOC, or another technical wizardry.  This facility is at best, technically average, albeit well maintained.  There is an older Orban Optimod processor, an older AM transmitter, and the original, electrically short tower.  The station also has a working emergency generator.  The only new tech is the web stream, which all radio stations should have.

The station is successful because of its programming, period.  People love local radio.  Making connections with listeners imparts a shared sense of community.  Being on the air with a local presence during storms, even when the power is out, is a big deal.  When it comes to relevance within the community and local businesses; in 2013 all radio stations need to earn that.

Conclusion:

I do not suffer from technophobia; when digital radio was first proposed, I welcomed the idea.  It was not until I began looking at the technical proposals and iBiquity’s proprietary system that I became concerned.  After hearing the initial implementation of AM HD radio on WOR in NYC, I was not impressed with either it’s audio quality or the side band interference that the analog/digital hybrid AM HD system created.  What is of even greater concern is the propensity for government regulatory agencies to rubber stamp technical proposals by lobbying associations without testing or even fact checking.

Digital modulation methods at medium frequencies present a unique challenge where the ratio of the signal bandwidth to available frequency spectrum becomes too great to be practical.  This is exacerbated at the lower end of the band where side band symmetry is difficult to achieve at ±15 KHz required by the all digital and the analog/digital hybrid version of AM HD radio.

Clearly, AM radio needs a technical revamping.  Can it be saved?  Yes.  Is it worth saving? Yes.  Is a yet unproven proprietary digital modulation scheme the way to do it? No.

And that is all I have to say on the matter.

The AM HD all digital test, part III

Continued from part II:

Can the AM broadcast service be revitalized and returned to relevancy?  If so, how?  The previous post demonstrated that AM radio service problems are multigenerational and multifaceted.  There is no one solution that will make everything better.  Pushing an all-digital solution will not solve electrical noise issues or overcrowding issues on the AM band.  It will not address the paucity of the local, unique programming that is the bread and butter of successful AM operators.  Because the issues that face AM operators cover many different areas of broadcasting, any proposed solution must address every aspect.  Any proposal that simply addresses the poor fidelity, for example, will simply be another band-aid (no pun intended), placed on top of numerous others which have been previously ineffective.

The FCC is looking for deregulatory solutions to the AM problem.  Deregulation and the FCC’s lasissez-faire attitude is exactly why the AM broadcast band is in the condition it is today.  Relaxed technical standards have allowed the creeping crud to take over like Kudzu.  Further deregulation will only exacerbate the problems.

In broad categories, AM radio’s problems are:

  • Noise and interference
  • Low fidelity
  • Lack of ratings
  • Low profitability

Electrical Noise on AM broadcast band

In order for any solution to be effective, this problem must be addressed first.  Noise and interference are at the heart of the technical issues confronting the typical AM radio listener.  These problems come from multiple sources, but the worst of which are electrical devices such as CFLs and other fluorescent lights, LED lamps, street lights, utility company wires, computers, computer monitors, TVs, power line communication, appliances, and other intentional emitters.  The FCC has, within it current powers, the ability to address at least some of these noise generators.  Devices like CFLs, LED lamps, computers, and others are regulated under Part 15 and 18 of the FCC rules.  While there is little that can be done with fluorescent lights (they work using an internal electrical arc), other emission standards can be tightened and better, more specific warning labels can be implemented on the packaging.

Station-to-station interference on the AM broadcast band

Another aspect of this problem is mutual interference on the AM broadcast band.  In short, too many stations are licensed to a small slice of the electromagnetic spectrum.  The increasingly poor condition of many directional antenna systems ensures that there is a cacophony of interference at night.  While this is a politically sticky situation, some tough love is needed to solve these problems.  There are many underperforming AM stations on the air that are junkyards of last-ditch formats that have little or no hope of success.  These stations are often technical disasters that pollute the spectrum with interfering signals.  Compounding this issue is the transmission of IBOC at night.  The current iteration of IBOC (HD radio) intentionally transmits on adjacent channels creating more problems than it solves.

Confronting any of these issues is almost certain to be a non-starter and that is a shame because real, meaningful steps can be taken here.

One scenario would be a one-time test, applied during the next license renewal cycle, that allows station owners to assess their operations.  Those that do not pass the test would be able to surrender their license for a tax credit.  This type of culling is not unprecedented, as the FRC did something very similar during the early days of broadcasting when the AM band became a free for all.  The test should have three areas of consideration; technical operations, programming, and business profitability.  Something like this would be a reasonable example of a re-licensing test:

Technical operations
Test Points
Does the
license 2
Is antenna array being maintained, field mowed, trees cut, tower fences secure, signage posted, catwalks or access roadways maintained 1
Does station have a working backup transmitter 1
Does station have a working backup STL 1
Does station have a working emergency generator 1
Does station have a current transmitter maintenance log 1
Are NRSC measurements up to date 1
Are monitor points measured at least biannually 1
Minimum score to pass technical operations: 5 points
Programming
Test Points
Does station originate local programing 1 point per average weekly hour
Does station have local news 1 point per average weekly quarter hour
Does station appear in market ratings survey 1 point per survey period (or 4 points for continuous survey markets)
Minimum score to pass programming test: 5 points
Business
Is the station profitable ¼ point for every profitable quarter during last license period
Minimum score to pass business test: 3.5 points
Minimum overall score for all three tests combined: 16 points

This is a fairly low bar to get over. I generally do not advocated more government regulations and regulatory burden. However, this is one case where relaxed regulations lead to the problems currently being encountered. Perhaps a one time re-regulation would be warranted in the public interest.

Audio quality and other technical improvements

There are several areas where new technology can be used to improve AM stations technical quality.  There is a common misconception that AM broadcasting has low fidelity due to inferior bandwidth.  Truth be told, AM broadcasting can pass 15-20 KHz audio.  It is restricted to less than 10 KHz because of the aforementioned band congestion problems.  Since the NAB and the FCC has made exceptions to the NRSC-1 requirement in order to transmit HD radio, perhaps other wide bandwidth uses can be considered.  One possibility would be to allow transmission of 15 KHz audio during daytime hours, switching back to NRSC-1 standard after dark.  This may not work on local (class C) channels but for regional and what remains of cleared channels, it may offer some improvement.  Also, turning off IBOC hybrid analog/digital transmissions after dark should be examined regardless of whether an all digital solution is sought.  Hybrid IBOC is a part of the night time noise problem and not a viable solution, particularly troublesome are class A skywave signals.

Also, much benefit could be derived from requiring that all AM stations sync their carriers to GPS.  If all of the stations on the same channel are on exactly the same frequency, it will eliminate carrier squeals, growls and whines.  This is something that can be done very easily and inexpensively, especially with newer transmitters.

Double sideband AM is wasteful, as both lower and upper sidebands contain the same information.  Suppressing the lower sideband and transmitting just the carrier and upper sideband would free up quite a bid of bandwidth and reduce adjacent channel interference.  Most simple diode detectors demodulate the upper sideband anyway.

A concerted effort must be made to restore all of the technically deficient antenna systems.  Not only fixing out of tolerance DAs but also addressing bandwidth issues, general maintenance, ground systems, clearing away brush and undergrowth can all have noticeable positive effects on signal performance.

At the same time, better receivers are making their way into the market place.  Receivers that have auto variable IF bandwidth based on signal strength could greatly improve audio quality.  The auto bandwidth function could be overridden by user selected bandwidth, if desired.  I know that wider IF bandwidths are in the current chipset because of IBOC and DRM, I do not know to what extent they can be adjusted, but it is something that receiver manufactures should consider.

None of these solutions are Earth shattering, nor would they require great sums of money to implement.

AM to FM Translators

The current thought process is that using FM translators for AM stations is a fantastically great development.  For a class D AM station with little or no night time power, an FM translator is a good way to maintain service to the community.  For class C or some class B AM stations where night time interference greatly degrades the station’s service area, an FM translator is a good way to maintain service to the community.  Does a 50 KW blow torch really need a 250 watt (or less) FM translator to aide with reception in its city of license?  No.  Yet, this is how the AM to FM translator service will be rolled out, those that already have sound technical operations will be given FM authorizations.  This does nothing to actually fix AM broadcasting technical issues, it is a well meaning measure that will be incorrectly applied by the broadcasters that need it least.

Programming

All of the technology and gadgets will not solve the problem of poor programming.  This is an area where the FCC should not tread, however, broadcasting associations can assist their members with local programming issues.  Broadcasters need to understand that good local programming that is unique will attract listeners, worthless junk will not.

Continued in part IV

The AM HD all digital test, part II

Continued from part I:

In order to get to the root problems of AM (aka Medium Wave, or Medium Frequency) broadcasting, a bit of history is required.  For the sake of brevity, here is the cliff notes version:

  • Early broadcasting services were entirely AM and heavily regulated by the FRC and later FCC
  • FM broadcasting was introduced in the late 1930s experimentally, then commercially circa 1947
  • In 1946 the FCC relaxed its regulations allowing many more AM stations to be licensed as both class II (currently class B regional) and class II-D, II-S, and III-S (currently class D) stations.  Between 1946 and 1953 the number of AM stations more than doubled from 961 to 2,333
  • In spite of FM’s technical superiority, AM remained dominant until approximately the mid to late 1970s when the FCC forced FM stations to end simulcasting with co-owned AM stations
  • Broadcast deregulation came in small waves at first; programming rules, business rules, some technical rules, and operator license requirements were done away with, and enforcement of other rules became more selective
  • Deteriorating antenna systems, splatter, modulation wars, declining technical resources, and increased electrical noise created interference issues
  • The electrical noise floor gradually increases as more electrical appliances, street lights, fluorescent lights, and other intentional emitters increase
  • Radio manufacturers responded to consumer complaints by greatly reducing the audio bandwidth of their AM receivers
  • Broadcast deregulation greatly increased in the 1980s
  • The FCC voted in 1980 to limit skywave protection of clear channel (class I or A) stations to within 750 miles of the transmitter site allowing former daytime-only stations to stay on at night which increased interference
  • AM Stereo is implemented in 1982 to improve quality and compete with FM broadcasting.  Competing systems are proposed, FCC does not mandate a standard, lets the market decide, and the technology dies off
  • The National Radio Systems Committee (NRSC) is formed and comes up with a standard (NRSC-1) that restricts AM broadcast audio to 10 KHz or less, mandates yearly measurements
  • Ownership rules are loosened somewhat in 1994, then greatly in 1996
  • The expanded AM band (1,610 to 1,700 KHz) is opened up in 1997 to existing AM broadcasters.  Once stations are licensed to operate in the expanded band, they are supposed to surrender their former licenses, few do
  • The great radio consolidation takes place; from 1997-2004.  Synergy is the word of the day, stations are overvalued in multiple transactions which created a debt bubble
  • Skywave listening is mostly depreciated as an acceptable communications method by the industry
  • The introduction of IBOC hybrid analog/digital broadcasting in 2002 greatly increased the adjacent channel interference issues.  Sidebands out to ±10-15 KHz of the carrier are introduced with power levels of -16dBc.  For a 50 KW station, this equals approximately 2,500 watts of power transmitted on each of the adjacent channels.  Analog audio of stations transmitting AM IBOC is restricted to 5 KHz, background digital noise is often present in analog audio, further degrading the quality
  • Inside electrical noise greatly increases as compact fluorescent lamps (CFL) and LED lamps become popular energy-saving measures
  • Night-time operation of HD radio was permitted in 2007 creating greater interference problems to distant adjacent channel stations
  • There are 4,738 AM stations licensed, 89 are silent, approximately 210 transmit HD radio, and approximately 66 (mostly class A and B stations), transmit HD radio at night

There is not any one development that can be singled out as the smoking gun that killed the AM broadcast band, it is rather, a death from a thousand cuts.  Because of heavy debt loads, technical, programming, promotional, and personnel resources are directed away from AM stations (and FM stations too).  After the staff was reduced and news departments eliminated, AM stations became a dumping ground for mediocre satellite-syndicated talk programming.  Eventually many also became a technical nightmare due to deferred maintenance.

There can be little doubt, AM broadcasting is a tough business to be in.  In spite of all of that, however, there are several AM stations that are not merely surviving but thriving.  What does it take to be a successful AM broadcaster in 2013?  There seem to be several common threads, but the two most common are good technical operations and local programming.

Continued in Part III