Shielded Category Cable

There is some disagreement in the organization that I work with regarding the use of Shielded Cat 5e cable. Is it needed and if so, when and where?  Category cables commonly used in Ethernet computer networks and also used for analog audio and other data applications come in a variety of flavors.  Shielded (Shielded Twisted Pair or STP) and unshielded (Unshielded Twisted Pair or UTP) Cat 5, 5e and 6 are the most common in radio broadcast facilities.

The main purpose for using UTP and STP for high speed data transmission is common-mode rejection.  Cables that are installed in office buildings are subject to various electric and electronic noise sources.  Properly installed UTP works to reject these unwanted signals by using differential signaling, which is balanced.  Differential signaling can best be described as transmitting information using two complimentary signals that are opposite from one and other.

Noise rejection, differential signaling.  "DiffSignaling" by Linear77 - Own work. Licensed under CC BY 3.0 via Wikimedia
Noise rejection, differential signaling. “DiffSignaling” by Linear77 – Own work. Licensed under CC BY 3.0 via Wikimedia

The key performance measurement in category cable is Common Mode rejection.  Outside noise will introduce a common mode signal on the cable which will be cancelled out by the differential amplifier on the receiving end of the circuit.  Proper terminations and good wiring techniques are very important for proper performance.

Using the correct patch panel termination, terminating block or RJ-45 (8P8C) connectors are required to maintain the advertized bandwidth of the cable.  There is also a difference in connector and terminating block designs for solid versus stranded cables.  Using improper connectors for the type of cable installed can cause dropouts and loss of data.

When installing category cable, care must be taken not to kink the cable, not to exceed the recommended minimum bending radius or exceed the maximum pulling force. Each of these will degrade the cable performance by changing the physical characteristics of the cable. Each pair of wires in category cable has a different twist. Altering these twist ratios by stretching the cable or bending it too sharply will increase the NEXT (Near End Cross Talk) and FEXT (far end cross talk) between pairs. In Gigabit networks, this will degrade throughput and create bottlenecks.

Generally speaking, the minimum bending radius is four times the cable diameter, or approximately one inch for Category 6 cable.  The maximum pulling tension is not more than 25 ft/lbs or 110 Newtons.

Category 6, Shielded Twisted Pair
Category 6, Shielded Twisted Pair

In high EMF environments, shielded cable (STP) can be beneficial in mitigating high electrical noise along with proper installations techniques noted above.  Signaling levels on 100BaseT are +1, 0 and -1 volt (MLT-3 Encoding).  On Gigabit Ethernet, the levels are +1, +0.5, 0, −0.5 and −1 Volt (PAM-5 Encoding).  Induced voltages on in cables from external sources can degrade network performance and create bottlenecks.  High EMF environments would include places like transmitter sites and anything on a tower or rooftop.  Properly terminated shielded cable is necessary for EMP protection from lightning strikes or other sources.  STP has special shielded metal connectors which each category cable class.  These connectors supply the path to ground through the RJ-45 jack.

Ungrounded shields are useless.

RJ-45 or 8P8C shielded plug for Category 6 STP
RJ-45 or 8P8C shielded plug for Category 6 STP

There are also other cable characteristics to consider such as UV resistant jacking for outdoor installations or gel filled (AKA “flooded”) cable for wet locations.  Fortunately, there are plenty of sources for these types of cables and they are not terribly expensive.

To answer the question at the beginning of the post; STP can be beneficial at high EMI/EMF or RF sites to mitigate induced voltages on the cable from external sources provided it is properly terminated.  In office and studio locations which are not at or next to a transmitter site, UTP is more than adequate provided it is properly installed and terminated.

Fifth Generation WLAN

Like all data carrying technology, WLAN, or WiFi, continues to evolve into a better, faster and more robust platform.  The IEEE wireless ethernet specification 802.11ac combines all of the past developments, plus some added features, into one specification.  Here are some of the highlights:

  • Operation on 5 GHz only.  Many more available channels in this spectrum than in 2.4 GHz
  • Increased channel bonding making wider channels carrying more data.  In the 5 GHz spectrum channels are 20 MHz wide and do not overlap.  802.11ac allows for 40, 60, 80 or even 160 MHz channels.  This is great for short distances, longer distances will be prone to greater interference over wider channels
  • Modulation schemes that allow up to 256 QAM.  A 256 QAM constellation is going to look pretty crowded unless it is on a wide channel.  Again, this would be good for short distances.
  • Increased MIMO.  Up to 8×8 MIMO (Multi In Multi Out) which can greatly improve throughput.  MIMO means multiple transmitters and antennas in the same unit.  The first number is the transmitter count the second number is the antenna count.  Thus an 8X8 system will have eight transmitters and eight antennas.  This allowed beam forming by use of phased antenna arrays, which can greatly reduce multi-path
  • MU-MIMO (Multi-User MIMO).  Basically, the access point sends the data frame only to the desired host, thus instead of acting like an ethernet hub sending the frame to every connected host, the AP is acting more like an ethernet switch.
Comparison of 802.11n to 802.11ac
Comparison of 802.11n to 802.11ac

The goal of all of these modifications is to get gigabit transfer rates over WLAN.

What does all of this have to do with radio broadcast, one might ask.  That is a good question.

There are several applications that have to do with remote broadcasting.  Many sports areas, night clubs, or other likely places to be broadcasting from have WIFI installed.  Using a laptop with an AoIP client installed not only can connect to the studio for audio delivery, the same laptop can use RDP or VNC to control the station’s automation computer as well.  This means easier integration of the remote into voice tracked or syndicated programming.

Secondly, wireless LAN bridges between studio and transmitter site can act as a STL, a backup STL, a remote control return link, bridge for a network connected transmitter,  VoIP phone link, IP security camera back haul or almost anything else that can send ethernet data.  I have found it useful to simply have a computer available at the transmitter site, even if it is only to download manuals and what not.  We have taken several old Windows XP machines and reloaded them with a Linux variant and installed them at various transmitter sites.  It saves the trouble of having to download a manual on the smart phone then page back and forth across a really small screen to read it.  As for using unlicensed WiFi to link to a transmitter site; the link between the WICC studio and transmitter site runs a 78 Mbps most days.  This is a two mile link over mostly water.  I will say, when there is fog, the link rate drops to 32 Mbps, which is still pretty good, all things considered.

Of course, office network applications; laptop, tablet, smartphone and other personal devices.

Finally, Broadcast Engineers really need to keep abreast of networking technology.  There are many, many applications for WiFi units in the broadcast industry.

Category 7 Cable

As data transfer technology progresses, so do cable types.  Category 6 UTP copper cable is commonly used today in ethernet installations where 1000BaseT (or gigabit ethernet) systems are required. Cat 6 cable has a certified bandwidth of 250 MHz (500 MHz for Cat6a). Category 6 cable is a newer version of Category 5 and 5e cable wherein the wire pairs are bonded together and there is a separator to keep each pair of wires the same distance apart and in the same relationship to each other.  The four twisted pairs in Cat 6 cable are also twisted within the overall cable jacket.

Category 7 cable is much different from its predecessors.  It has an overall shield and individual pairs are shielded:

Category 7, STP ethernet cable
Category 7, STP ethernet cable

Shields on individual pairs are required to reduce cross talk (FEXT, NEXT). It also requires special shielded connectors called GG45 plugs and jacks.  Pinouts and color codes are the same as gigabit ethernet (Category 5e and 6) however, Category 7 (ISO 11801 Class F) jacks and plugs also have to contacts on the corners of the connector or jack.  This allows better shielding.  A small switch in the jack senses when a category 7 type connector is inserted and switches to the corner contacts, thus keeping jacks and patch panels backwards compatible with Category 5/6 cables.

Category 7 GG45 connectors, jack and plug
Category 7 GG45 connectors, jack and plug

Category 7 cable is rated for 600 MHz bandwidth (1000 MHz for 7a) which translates to 10 GB ethernet.  This was previously the domain of fiber cable.  Copper cable has some advantages over fiber; lower propagation delays, requires less complicated equipment, copper is less expensive than fiber and more durable.  It is nice to have the flexibility to use copper cable on 10 GB ethernet for runs of 100 meters or less.  Longer runs still require fiber.

Category 7 and 7a cable looks remarkably similar to the older Belden multipair “computer cable” pressed into service as audio trunk cable seen so often in older studio installations.