January 2017
« Nov    



The unitless coefficient of Zorch

Zorch is a term used to describe an over voltage or over current condition that usually leads to catastrophic failure, e.g. the power supply was zorched by lightning. There is also a quality to radio signals that defy and exceed theoretical definitions for service contours or power density.  That is quality defined as:

Zorch (adj): The ability of an RF signal to be received in unlikely locations; outside of predicted service contour, in steel structures, underground facilities, tunnels, etc.

It brings to mind the saying, “antennas are not amplifiers and amplifiers are not antennas.”

ERI circularly polarized 2 bay antenna

ERI circularly polarized 2 bay antenna

During the earlier stages of FM broadcasting, there was a notion that costs could be reduced by increasing antenna gain and reducing transmitter size. While theoretically, ERP (Effective Radiated Power) is ERP, broadcasters soon learned that high gain antenna, low TPO (Transmitter Power Output) installations lacked building penetration and had other reception issues.  Realizing that there is a trade off between antenna bays, transmitter power output especially in difficult reception areas, a great debate occurred and continues on what the optimal system is.  The answer is, it depends on the receiving environment.

Where this technical detail can be really important is with lower powered FM stations; Class A and LPFMs to be exact.  They are already battling against bigger stations that have tens or even hundreds of times  more power.  Certainly an LP-100 station has it’s work cut out for it.  The choice of antenna is perhaps one of the most important technical decisions to be made.  Choosing the right balance of antenna type, antenna gain, antenna height and transmitter power output can greatly influence reception reliability and thus coverage area.

A good study of this quality can be had by looking at various LPFM installations:

Station ERP (watts) Antenna Type Antenna Gain (power) TPO (watts)* Coefficient of Zorch
100 1 bay vertical 0.92 127 0.1
100 1 bay circular 0.46 253 0.4
100 2 bay vertical full 1.98 58 0.15
100 2 bay vertical half 1.40 83 0.2
100 2 bay circular full 0.99 118 0.5
100 2 bay circular half 0.70 166 0.7
100 3 bay circular full 1.52 77 0.46
100 3 bay circular half 1.01 115 0.52

*Includes 100 feet of 1/2 inch foam transmission line, Andrew LDF4-50A, loss of 0.661 dB  at 100 MHz, or 0.859 power gain.

Stations should try to get the transmitting antenna as high up as permitted without reducing ERP.  In other words, the FCC allows 100 watts ERP with 98 feet Height Above Average Terrain (HAAT) radiation center in their current LPFM rules.  Being lower in height will reduce the coverage area.  Going over 98 feet HAAT will cause the station’s power to be reduced, which will lower the coefficient of zorch accordingly.  Therefore, getting as close to 98 feet HAAT, which is different than 98 feet above ground level in many places, will net the best performance.

If a singular polarization (horizontal or vertical) is desired, vertical polarization should be chosen, as most mobile reception is by a vertical whip antenna.  For best reception performance, a circularly polarized antenna will work best, as receiver antenna orientation will not effect the signal reception.  A circularly polarized antenna has better building penetration and multi-path characteristics.  The FM broadcast circularly polarized antenna in not a true circularly polarized antenna, it is actually unpolarized.

The use of a multi-bay antenna has the effect of focusing the RF radiation outward, perpendicular to the element stack, thus limiting the radiation directly up or down from the antenna.  This is more pronounced with one half wave spaced antennas, which may be an environmental consideration in heavily populated areas.

Thus, the best coefficient of zorch for an LPFM station would be a circularly polarized, 1/2 wave spaced, 2 bay antenna.  This antenna would have some gain over a single bay antenna, take up less room on a tower than a full wave spaced antenna, offer good RF protection performance for the general public living and working under the antenna, reduce wasted upward radiation and offer good building penetration for the ERP.  It would require a slightly larger transmitter and more electricity, but that trade off is well worth the effort.

Now where is that BNC male to N female adaptor

Working with RF can produce some head scratchers.  Most transmitter manufactures tend to use the same type of connector for things like exciter RF outputs and composite inputs.  Over the years, I have become well stocked with all sorts of BNC and Type N connectors.  Satellite equipment uses Type F connectors, Analyzers use Type N, Oscilloscope uses BNC,  GPS equipment uses SMA and so on.  Except when they don’t.  As any good engineer will tell you, when they don’t will be in the middle of the night at some mountain top location while the station is off the air.

After one such incident, I invested in a TPI-3000A adaptor kit.  This kit has both the male and female versions of Type N, F, SMA, BNC, TNC, UHF, UHF mini and RCA.  They can be mated in any combination using the Universal interface.

TPI 3000A adaptor kit

TPI 3000A adaptor kit

On more than one occasion, this little kit has meant the difference of between being back on the air or driving down the mountain to look for an in between series adaptor.  A couple of recommended additions include a 7/8″ and 1 5/8″ EIA flange to type N male.

TPI-3000A inside

TPI-3000A inside

They can be a little pricey, however, I have seen several for sale on eBay for less than $100.00.  The key to not loosing the various little parts to this kit is to write a little note detailing the date and location where the adaptor was used,  then stuff it in the empty hole.  Hopefully, when permanent repairs are made, the adaptor will be retrieved.


A pessimist sees the glass as half empty. An optimist sees the glass as half full. The engineer sees the glass as twice the size it needs to be.

Congress shall make no law respecting an establishment of religion, or prohibiting the free exercise thereof; or abridging the freedom of speech, or of the press; or the right of the people peaceably to assemble, and to petition the Government for a redress of grievances.
~1st amendment to the United States Constitution

Any society that would give up a little liberty to gain a little security will deserve neither and lose both.
~Benjamin Franklin

The individual has always had to struggle to keep from being overwhelmed by the tribe. To be your own man is hard business. If you try it, you will be lonely often, and sometimes frightened. But no price is too high to pay for the privilege of owning yourself.
~Rudyard Kipling

Everyone has the right to freedom of opinion and expression; this right includes the freedom to hold opinions without interference and to seek, receive and impart information and ideas through any media and regardless of frontiers
~Universal Declaration Of Human Rights, Article 19

...radio was discovered, and not invented, and that these frequencies and principles were always in existence long before man was aware of them. Therefore, no one owns them. They are there as free as sunlight, which is a higher frequency form of the same energy.
~Alan Weiner

Free counters!