Last Walk across The Island

Yesterday I took, what I hope to be, my last walk across Pleasure Beach Island in Bridgeport, Connecticut. The task at hand was repairing the antenna array for WICC. There turned out to be several issues which were addressed in turn.

WICC tower feed point, courtesy of NECRAT

The trouble started when the feed line between the ATU and the tower became disconnected during a storm. That consists of a 1 inch copper pipe extending from the ATU feed through insulator up to a brass plate suspended between the four tower legs by hard drawn single 0 copper wire. The feed line separated at the brass plate which, unfortunately, is approximately eighteen feet in the air.

North Tower feed point connection, cold soldered

The feed line was repaired, but not effectively. By the looks of the picture, the brass plate never got hot enough to accept the solder.

After the feed line was re-repaired, other issues became apparent. The base impedance of the tower was still off and the array was still way out of tolerance.

It was noticed that several bypass capacitors on both of the tower lighting chokes where blown open. Those where replaced and the tower lighting chokes where checked for shorted turns. While it is always nice to replace burned out parts, this did not correct the problem.

Finally, we were back at the base of the tower with the defective feed point and a decided to grab the pipe and give it a good shake to see if it came apart again. It did not, but then I realized that that tower was supposed to be back in the circuit and I did not receive any RF burns for my carelessness.

We dug into the ATU and discovered that the input capacitor was marginal and there was a large crack in it. The output capacitor seemed to be completely open. The base current that we were seeing on the base current meter was being induced by the other tower. It all began to make sense.

Bad Capacitor

The parts were ordered and shipped and I made another trip out to install them myself.

Thus, on this particular day, I had my tool bag, an OIB-3 with fresh batteries, my cordless drill, drill bits, and three type 294 mica capacitors. I took the drill because the new capacitors were quite a bit larger than the old ones, so I needed to move the stand off insulators to remount them.

Pleasure Beach pier, foggy day

The walk from the end of the dock to the transmitter site is approximately 900 meters or 0.55 miles, according to google maps. On a nice day, it is a pleasant walk. On not so nice days, it can be less so. It was foggy with light drizzle. Not enough to get wet right away, but enough to get slowly soaked while working on the ATU repairs.

WICC square base self supporting towers, manufactured by Milliken Tower, circa 1924

With the new capacitors installed, I needed to adjust the array back into tolerance, which didn’t take too long. I made a short video of the station running at full power showing the antenna monitor readings for both the day and night patterns. Then packed up and headed back to the dock.

My ride is here

I wanted to take a set of monitor points, but the FIM-41 had been moved to another location. That was fine, I was getting pretty uncomfortable in my wet clothes, so I headed home.

Goodbye, WICC.

The Temporary AM antenna

One of those things that I have written about before, but seems to be common these days as older AM towers need to be replaced. One of our clients had just such a tower. Erected in 1960, the hollow leg stainless tower was rusting from the inside out. When the tower crew came to put up the translator antenna, they discovered that there was a hole in one of the legs and climbed back down.

The tower condition was somewhat known about, there were braces installed several years ago at certain levels to keep the tower standing. The new owner had planned to replace the tower eventually, so those plans where moved ahead.

Temporary Wire antenna, WKNY, Kingston, NY
Temporary Wire antenna, WKNY, Kingston, NY

A temporary utility pole was installed near the transmitter building and a wire was strung to another customer owned pole about 170 feet away. At 1,490 KHz, that proved to be a pretty good length. The issue with these medium wave temporary antennas is always the height above ground. In order for the radiation resistance to be somewhat reasonable, the antenna needs to be at least 1/8 to 1/4 wave length above ground. That means a minimum of 78 to 157 feet at 1,490 KHz. The utility pole installed is 35 feet AGL.

WKNY temporary ATU

Thus, the wire antenna has a fairly low resistance, with loads of inductive reactance. Something on the order of 20 ohms, +j480. Since this is temporary, we reused the existing ATU that was designed for the series excited tower. With a capacitor installed on the incoming wire to cancel out some of the inductive reactance, a simple T network was configured to match the 50 ohm transmitter output to the 20 ohm antenna.

In the end, we were able to run about 400 watts into the wire, which covered the city of license fairly well. While the new tower was being erected nearby, we had to reduce that to about 100 watts to protect the tower workers from the hazards of non-ionizing radiation.

WKNY new tower build

The new replacement tower has been constructed. It is the exact same height as the old tower, but has a twenty foot pole on top instead of a normal tower section. The pole was installed to mount the translator antenna. In addition to that, there will be other wireless services installed on this tower.

WKNY will have a six wire skirt installed in the next few days. As this tower is close to 160 degrees at 1,490 KHz, the skirt can go anywhere from 60 to 120 degrees up the tower.

Gone and apparently forgotten

Can a 50,000 watt AM station disappear from the airwaves and no one notice?

The answer is yes, if you live in the Albany, NY area.  WDCD, 1540 KHz, (formerly WPTR) has surrendered its license to the FCC last Friday, September 28, 2018.  Seventy years on the air and quite the legacy as a Top-40 station in the 60’s and 70’s.

Unfortunately, the station had fallen on hard times the last few years, being silent twice for long stretches of time.  In the end, I suppose it was simply time to pull the plug.

This was my first CE gig in the early 1990’s.  What I remember was, I had a lot of fun working there.

So long and thanks for the memories.

 

A tale of five signals

I am currently finishing an interesting project involving putting up two translators on a diplexed AM tower which also holds a mobile phone/data tenant as well.  All-in-all, this seems to be a very efficient use of vertical real estate.

WMML WENU tower, Glens Falls, NY
WMML WENU tower, Glens Falls, NY

The AM stations are WMML and WENU in Glens Falls, NY.  The AM stations are diplexed using a Phasetek diplexor/ATU.

Diagram showing WENU/WMML tower with W250CC/W245DA antenna installed
Diagram showing WENU/WMML tower with W250CC/W245DA antenna installed

Diplexor diagram, WENU/WMML Glens Falls, NY
Diplexor diagram, WENU/WMML Glens Falls, NY

The translators are W250CC and W245DA which are using a NICOM BKG-77/2 two bay 3/4 wave spaced antenna mounted at 53 meters AGL.  The translators use a Shively 2640-04/2 filter/diplexor which as a broad band input port in addition to the translator input ports.  Since these translator signals are only 1 MHz apart, the higher power Shively filter was installed because it has better rejection characteristics.  The broadband input port allows the NICOM antenna to be used as a back up for any of the three FM stations; WKBE 107.1, WNYQ 101.7, or WFFG 100.3.  Two transmitter sites for those stations are mountain top locations which are very difficult to get to in the winter time.  Having a backup site available takes some of the pressure off during storms or other emergencies.

Shively 2640 -04/2 filter for W250CC and W245DA

The NICOM FM antenna was mounted on the tower when W250CC went on the air in October of 2016.  When it was installed, the base impedances for both AM stations were measured.  For some reason, WENU 1410 KHz seems to be more sensitive to any changes on the tower, thus the WENU ATU needed a slight touch up.  When working on diplexed AM systems, it is also important to make sure that both trap filters, which are parallel resonant LC circuits, are tuned for maximum rejection of the other signal.  During this particular installation, nothing was added to the tower and no change in the base impedance for either station was noted.

Shively Filter, connected to transmitters and antenna
Shively Filter, connected to transmitters and antenna

As a condition of the construction permit, measurement of spurious emissions of all stations sharing the common antenna needed to be completed to ensure compliance with FCC 73.317(b) and 73.317(d).  I made careful measurements of the potential intermod products between the two translator frequencies.  This measurement was completed with my TTI PSA6005 spectrum analyzer.

The primary concern here is mixing products between the two transmitters. Both transmitter are BW TXT-600 with low pass filters before the output connector. There are three frequencies of interest;

  1. (F1 – F2) + F1 or (97.9 MHz – 96.9 MHz ) + 97.9 MHz = 98.9 MHz
  2. F2 – (F1 – F2) or 96.9 MHz – (97.9 MHz – 96.9 MHz) = 95.9 MHz
  3. F2 + F1 or 97.9 MHz + 96.9 MHz = 194.8 MHz

That, plus harmonic measurements out to seven or eight harmonics of the fundamental frequency should be enough to demonstrate compliance with FCC out of band emissions standards. Being that this site has LTE carriers, it is very important to measure the harmonics in those bands. Mobil data systems often use receiver pre-amps, which can amplify harmonics from the FM band and make them look out of compliance. Having a base set of reading to fall back on is always the best course in case the “out of tolerance” condition gets report to the FCC.

Measurements on these frequencies must meet the emissions standards outlined in FCC 73.317 (d), which states:

Any emission appearing on a frequency removed from the carrier by more than 600 kHz must be attenuated at least 43 + 10 Log10 (Power, in watts) dB below the level of the unmodulated carrier, or 80 dB, whichever is the lesser attenuation.

Harmonic frequencies to be measured:

Harmonics for 96.9 MHz fundamental Harmonics for 97.9 MHz fundamental Comments
193.8 195.8
290.7 293.7
387.6 391.6
484.5 489.5
581.4 587.4
678.3* 685.3* US LTE Band 71
775.2* 783.2* US LTE Band 5
872.1* 881.1* US LTE Band 5
969.0 979.0

*Frequencies that fall within the mobile data LTE bands. Traces where recorded and saved for these frequencies.

All of that information, once compiled is attached to the FCC form 350-FM, which, once filed grants Program Test Authority.

BW TXT-600 V2 translator transmitters
BW TXT-600 V2 translator transmitters under test and measurement