October 2018
M T W T F S S
« Sep    
1234567
891011121314
15161718192021
22232425262728
293031  

Archives

Categories

Gone and apparently forgotten

Can a 50,000 watt AM station disappear from the airwaves and no one notice?

The answer is yes, if you live in the Albany, NY area.  WDCD, 1540 KHz, (formerly WPTR) has surrendered its license to the FCC last Friday, September 28, 2018.  Seventy years on the air and quite the legacy as a Top-40 station in the 60’s and 70’s.

Unfortunately, the station had fallen on hard times the last few years, being silent twice for long stretches of time.  In the end, I suppose it was simply time to pull the plug.

This was my first CE gig in the early 1990’s.  What I remember was, I had a lot of fun working there.

So long and thanks for the memories.

 

A tale of five signals

I am currently finishing an interesting project involving putting up two translators on a diplexed AM tower which also holds a mobile phone/data tenant as well.  All-in-all, this seems to be a very efficient use of vertical real estate.

WMML WENU tower, Glens Falls, NY

WMML WENU tower, Glens Falls, NY

The AM stations are WMML and WENU in Glens Falls, NY.  The AM stations are diplexed using a Phasetek diplexor/ATU.

Diagram showing WENU/WMML tower with W250CC/W245DA antenna installed

Diagram showing WENU/WMML tower with W250CC/W245DA antenna installed

Diplexor diagram, WENU/WMML Glens Falls, NY

Diplexor diagram, WENU/WMML Glens Falls, NY

The translators are W250CC and W245DA which are using a NICOM BKG-77/2 two bay 3/4 wave spaced antenna mounted at 53 meters AGL.  The translators use a Shively 2640-04/2 filter/diplexor which as a broad band input port in addition to the translator input ports.  Since these translator signals are only 1 MHz apart, the higher power Shively filter was installed because it has better rejection characteristics.  The broadband input port allows the NICOM antenna to be used as a back up for any of the three FM stations; WKBE 107.1, WNYQ 101.7, or WFFG 100.3.  Two transmitter sites for those stations are mountain top locations which are very difficult to get to in the winter time.  Having a backup site available takes some of the pressure off during storms or other emergencies.

Shively 2640 -04/2 filter for W250CC and W245DA

The NICOM FM antenna was mounted on the tower when W250CC went on the air in October of 2016.  When it was installed, the base impedances for both AM stations were measured.  For some reason, WENU 1410 KHz seems to be more sensitive to any changes on the tower, thus the WENU ATU needed a slight touch up.  When working on diplexed AM systems, it is also important to make sure that both trap filters, which are parallel resonant LC circuits, are tuned for maximum rejection of the other signal.  During this particular installation, nothing was added to the tower and no change in the base impedance for either station was noted.

Shively Filter, connected to transmitters and antenna

Shively Filter, connected to transmitters and antenna

As a condition of the construction permit, measurement of spurious emissions of all stations sharing the common antenna needed to be completed to ensure compliance with FCC 73.317(b) and 73.317(d).  I made careful measurements of the potential intermod products between the two translator frequencies.  This measurement was completed with my TTI PSA6005 spectrum analyzer.

The primary concern here is mixing products between the two transmitters. Both transmitter are BW TXT-600 with low pass filters before the output connector. There are three frequencies of interest;

  1. (F1 – F2) + F1 or (97.9 MHz – 96.9 MHz ) + 97.9 MHz = 98.9 MHz
  2. F2 – (F1 – F2) or 96.9 MHz – (97.9 MHz – 96.9 MHz) = 95.9 MHz
  3. F2 + F1 or 97.9 MHz + 96.9 MHz = 194.8 MHz

That, plus harmonic measurements out to seven or eight harmonics of the fundamental frequency should be enough to demonstrate compliance with FCC out of band emissions standards. Being that this site has LTE carriers, it is very important to measure the harmonics in those bands. Mobil data systems often use receiver pre-amps, which can amplify harmonics from the FM band and make them look out of compliance. Having a base set of reading to fall back on is always the best course in case the “out of tolerance” condition gets report to the FCC.

Measurements on these frequencies must meet the emissions standards outlined in FCC 73.317 (d), which states:

Any emission appearing on a frequency removed from the carrier by more than 600 kHz must be attenuated at least 43 + 10 Log10 (Power, in watts) dB below the level of the unmodulated carrier, or 80 dB, whichever is the lesser attenuation.

Harmonic frequencies to be measured:

Harmonics for 96.9 MHz fundamental Harmonics for 97.9 MHz fundamental Comments
193.8 195.8
290.7 293.7
387.6 391.6
484.5 489.5
581.4 587.4
678.3* 685.3* US LTE Band 71
775.2* 783.2* US LTE Band 5
872.1* 881.1* US LTE Band 5
969.0 979.0

*Frequencies that fall within the mobile data LTE bands. Traces where recorded and saved for these frequencies.

All of that information, once compiled is attached to the FCC form 350-FM, which, once filed grants Program Test Authority.

BW TXT-600 V2 translator transmitters

BW TXT-600 V2 translator transmitters under test and measurement

Status of AM revitalization

It has been about five years since the AM revitalization initiative was first proposed by the FCC and about five years since the first rules changes took place.  Those rules changes included:

  1.  FM translators for AM stations
  2. Allowing stations to use MDCL (Modulation Dependent Carrier Level)
  3. Changing some of the antenna radiation efficiencies requirements
  4. Changing some of the allowable interference towards other stations requirements
  5. Loosening some rules regarding proofs, MOM, night time coverage over city of license, etc

Things that were not addressed:

  1. Receiver quality and technical advances
  2. Ambient noise levels on Medium Frequency (among other) bands
  3. HD Radio or any other digital modulation scheme

Things that were discussed then changed subsequently as a separate initiative:

  1. The main studio rule, which was eliminated for all broadcasting stations

What has been the net effect of these changes?  Has any of this revitalized AM radio?  The net effect has been approximately more of the same.  There have been many stations that have applied for and received licenses for FM translators.  Those stations, in most cases that I am aware of, receive some benefit of extra revenue because of this.  Stations with carrier power levels of 10-50 KW have taken advantage of MDCL technology to save some money on their electric bill.  Nothing wrong with that.

For stations that use a directional antenna, proofs of performance and other DA matters with the FCC have become slightly easier.  Medium Frequency (MF) directional antennas are very large, require a lot of land, are expensive to build, license and maintain.  I know of several stations which have downgraded from a class B station with a directional antenna to a class D station with a single tower and greatly reduced night time power.   Those downgraded stations certainly benefit from an FM translator.

I have heard from more than one AM station owner who says after four years, they are going to “turn in their AM license and just keep the FM.”  I am sure that they are not informed regarding translator rules.  Perhaps, however, the FCC will allow this in the future; a sort of back door commercial low power FM station classification.

The AM band zenith occurred in November of 1991, when there where 4990 licensed AM stations in the United States.  As of June 30, 2018, the total stands at 4633.  That is a decline of 357 stations.  There are currently 90 AM stations listed as silent.  That represents a decline of approximately 9 percent or less than 1/2 of one percent per year.

The last number of AM stations actually transmitting HD Radio that I found was approximately 110, which differs from the iBiquity (and FCC) number of 240.  The FCC data base includes stations which are currently dark, or stations which where transmitting HD Radio at one time but have since turned it off.  Either way, it is a small percentage of licensed stations.  As of this time, AM HD Radio appears to be a non-starter.  In other parts of the world, Medium Frequency DRM seems to be doing well.  The difference seems to be that the DRM operation is all digital and the digital carriers have a much higher power level than that of the hybrid AM HD Radio being used here.

Of those 4633 standard broadcast stations, approximately 260 belong to iHeart radio, Cumulus owns approximately 120 and Townsquare owns approximately 80.   That accounts for 460 stations.  The remaining 4000 or so stations currently on the air are owned by medium sized corporations or individual owners.  The reason for the distinction; I have noticed that the large corporate owners tend to concentrate resources and effort on those licenses that will make the best return, e.g. FM stations.  Of course, there are a few exceptions to that trend, often in major markets.

Of those 4000 or so remaining AM stations, most seem to be treading water.  They are making enough money to stay on the air.  There are a few AM stations that are doing remarkably well.  Those are the ones with primarily  local content.  The vast majority of AM stations are running some type of syndicated talk.  News/talk and sports radio are the two most common formats.  Conservative news/talk seems to be the bread and butter.  Liberal news talk has been tried, but none have succeeded.

Last May, the Supreme Court overturned the Professional and Amateur Sports Protection Act of 1992.  That federal law prevented gambling on outcomes of professional and college sports games.  With the overturn of that rule, individual states can now legalize sports betting.  It will be interesting to see what states allow legalized sports gambling and whether that has any effect on the various sports radio formats.  I can see where individuals and odds makers may want to get good inside information regarding team dynamics and so on.  The sports network that can furnish such information may be in a good position to carve out a niche.

Music can and does sound good on AM when it is done correctly.  There is a great misconception that AM fidelity is poor.  That is not necessarily so.  There are a good many AM receivers these days which have much better bandwidth than the previous generation receivers.  I am noticing that car radios in particular sound much better.  Yes, there are still problems with electrical noise and night time interference.  There are still technological improvements that can be made for analog AM on the receiver side.

In summary; the revitalization efforts have benefited some AM stations in some areas.  The truth is, that many AM stations have been let go for so long that there is no saving them.  Other AM stations that are still viable are making a go of it.  In nautical terms; there is six feet of water in the hold, the pumps are working and the ship is not sinking… for now.

WKIP

This was the radio station that I listened to (or rather, my parents listened to) when I was a very young kid.  From this source, things like school closings, weather, lunar landings, news, sports and traffic could be heard.  At one point, there was a guy called the “Traffic Hawk,” (real name Don Foster) who flew in a Cessna 172 east and west over main street in Poughkeepsie advising drivers of any slow downs in the area.  That’s right, Poughkeepsie, New York, population 30,000, had it’s own eye in the sky, broadcasting live from the aircraft overhead.  Actually, I think he also flew up and down South Road (US Route 9) in the vicinity of the IBM plant, which employed quite a few people in those days.

There was also a guy who tried to break the Guinness Book of World Records by staying awake the longest, this happened several times.

For me, it was the school closings.  I hated school with an absolute passion.  Everyday, I would ride the school bus and say a little prayer; “…please God, make it today.  Make the boiler stop working, or the electricity to go out.  Make the kitchen catch on fire or the roof to cave in.  You are a great and mighty God and I don’t ask for much.  Please destroy my school today.”  Alas, God did not seem interested in this.

Anyway, back to the topic at hand.

WKIP first signed on in 1940 with the studios and transmitter located at The Nelson House, 42 Market Street, Poughkeepsie.  That building is long gone and  the location appears to be the parking lot for the Dutchess County Office building.  Being neighbors with some influential guy from Hyde Park made for a nice dedication speech:

It signed on with a power of 250 watts on 1,420 KC on June 6th, 1940. Soon thereafter, it changed frequency to 1,450 KC as a part of the AM band shift brought about by NARBA.

Over the years, the station went through several ownership changes. The first major technical change came in 1961, when the station transmitter site moved to it’s current location, then called Van Wagoner Road, now Tucker Drive. The station increased power to 1,000 Watts and installed a direction antenna for daytime use.  It is one of those rare night time non-directional, day time directional stations.

The directional antenna consists of two towers; tower one is 180 degrees tall (103.4 Meters or 340 feet) with 35 degrees of top loading.  That is used for both the day and night time array.  Tower two is 85 degrees tall (48.8 Meters or 160 feet) and is used only for the daytime array.  This pushes the major lobe of radiation towards the north.  I don’t know the reasoning behind that, but somebody spend a good amount of money to make it so.

Here is a air check from the early 1980’s.  Weather on that day was “Sunny, cloudy, whatever… take your pick.”

Good old Steve Diner.

Today, the station looks like this:

The 1961 WKIP transmitter building with tower

The 1961 WKIP transmitter building with tower

When I was growing up, my cousins lived within walking distance of this. We used to come over than throw rocks at the tower when the station was unmanned on Saturdays and Sundays. At least, I think it was unmanned because no one ever came out and yelled at us.

WKIP backup transmitter, phasor and main transmitter

WKIP backup transmitter, phasor and main transmitter

Mid 1980’s MW-1A still runs. The BE AM1A is the main transmitter. The phasor is the Original 1960’s Gates Phasor.

This video shows how the studios used to look, before they were rebuilt by Clear Channel Circa 2002 or so. At about the 2:02 mark, you will see the room pictured above as it looked in 1990.

The space between the video above and the picture below looked bad with nothing in it. It looks better now.

WKIP clock

WKIP clock

That clock is a collectors items and belongs in a museum.

AM station downgrade

I have been working on another formerly direction class B AM station, this one is in Rutland, VT.  WSYB has been on the air since 1931 with the same call letters serving the east central part of Vermont.  In 1931, it was operating on 1500 kc with 100 watts of power.  In March 1941 it moved to 1490 kc with 250 watts before settling, a few months later, on 1380 with 1,000 watts, directional night time protecting CKPC in Brantford, Ontario, Canada.

The transmitter site was first located at 80 West Street (now known as BUS US 4), in Rutland.  It was moved to its current Dorr Drive (Formerly Creek Road) location in 1938, when the station was requesting a power upgrade to 250 watts.  Whilst cleaning out the old transmitter building, a copy of an operating log, dated December 7, 1945 was discovered in the attic above the transmitter room:

WSYB transmitter log, 1945

Back from the time when readings were required every 30 minutes.

In 1956, WSYB was allowed 5,000 watts daytime non-directional with 1,000 watts night time directional.

At some point in the early 1990’s, the original towers were replaced with solid leg Pirod towers, each 195 feet tall.

After that, things went the way things do; AM steadily declined in favor of FM, local programming was mostly replaced by syndicated satellite stuff, there were several transfers of ownership, etc.

A translator on 100.1 MHz was added in 2016; the two bay Shively antenna was installed at the top of the South West tower.   There is local programming on the station from 6am to noon on weekdays.  There may also be some gardening shows and other such programming on weekends.

The current owner has decided, like they have done in other markets, that AM directional antenna systems are a maintenance nightmare, the risk of FCC sanctions are high for an out of tolerance antenna array, the ratings and income from the station do not justify the risk/cost.  Thus, non-directional night time operation was applied for and granted.  The station is now a Class D with 25 ass kickin’ night time watts.

WSYB had a two tower night time antenna system.  The tower closest to the building (SW) was also the daytime, non-directional tower and it now holds the FM translator antenna and STL antenna.  Thus, it was decided to ground that tower and keep those antennas in service.  The far tower (NE), which was the second tower of the night time array would become the AM antenna.  The night time ATU was built for less than 1,000 watts input power, so several components needed to be upgraded for 5,000 watt operation.

WSYB rebuilt ATU

WSYB rebuilt ATU

I had available these nice vacuum capacitors that came out of another decommissioned antenna system.  The vacuum capacitors are great because the voltage/current ratings are much higher than the mica capacitors that were in the circuit before.  You can see black goop where one of the Sangamo mica capacitors on the input leg failed several years ago.  These vacuum capacitors are rated at 15 KV and the current rating at 1.38 MHz is probably in the 70-80 amp range.  I had to move the base current meter from the former daytime (SW) tower out to the NE tower.  The day night switch was taken out of the circuit.  The transmission line to the far tower was replace with 7/8 inch foam dielectric cable.  A slight touch up of the coil on the input leg of the T network was all that was required to bring it into tune.

The electric lines to the tower have been temporarily disconnected.  As soon as they are reconnected, I will vacuum out all the mouse crap and other debris.  The ATU building also needs some work sealing in up against the elements.

The tower base impedance is 75 ohms, +j95 making the base current 8.6 amps daytime and 0.58 amps night time.

WSYB radiating element

WSYB radiating element

For me, the magic of radio exists at that boundary between the real objects (towers and antennas) and the ether.  The transference of electrical voltages and currents into the magnetosphere is something that still fascinates me to this day.  Coupling a 5,000 watt medium wave transmitter to a tower and watching it work is something that I will never grow tired of.

Fixing another AM station’s antenna system

I have done several of these posts in the past, but it always seems to be of some interest, so it bears repeating.  AM antenna systems are not black magic.  They are actually pretty easy to understand if the fundamental knowledge is in place.  Medium Wave frequency wavelengths are fairly large compared to other broadcast frequencies.  Thus, the components are larger.

The three basic components of an AM antenna system are the tower, the ATU (antenna tuning unit) and the transmission line (AKA Coax).  The tower is the radiating element and they come in a variety of flavors; uniform cross section guyed, self supporting, series excited, shunt excited, etc.   A series excited tower has a base insulator and is fed directly from the ATU.  A shunt excited tower has a grounded base and uses a skirt or folded monopole design to transfer the RF to the main radiating element.  This design has an advantage as the tower can be used for other wireless and broadcast services.

The antenna work in question for this project is WINE, 940 KHz, Brookfield, CT.  The skirted tower is used for WRKI.  It also has two way and cellular clients.  The issue is instability of the WINE antenna system, which is likely due to improperly attached shorting wires between the skirt at the tower.  Over the years, the impedance of the skirt has gone way up.  The tower itself is 152.1 meters (499 feet) tall, or 170.3 electrical degrees.  The skirt length is about 82 electrical degrees and it is shorted at about 72 degrees.  There have been several papers written about folded monopoles for Medium Frequency (AKA AM or Standard) broadcast service.  The recommendations state that for best performance, the short to the tower should be between 62 and 90 electrical degrees.  Since the existing system falls in that range, there must be other problems with the antenna skirt and or shorting wire to the tower.

WINE skirted tower diagram

WINE skirted tower diagram

If one looks at this diagram, that configuration should look something like a gamma match, often used on dipole and yagi type antennas.  A gamma match can be thought of as a stub of transmission line which is bonded to the radiating element at some favorable wave length corresponding to the desired radiation resistance.  This is one of several configurations for folded monopole antennas and this type is most often seen on towers that support other wireless service antennas such as cellular and two way systems which are installed above the skirt.

There are a few interesting data points when looking at these type of antennas.  First is the ratio of the diameter of the skirt over the height of the tower, or D/H.  The larger this ratio is, the better the bandwidth characteristics of the antenna system are.  This makes sense, when you think about it. In this instance, the tower is 151 meters (495.4 feet) tall and the skirt is 3.3 meters (10.83 feet) wide, thus the ratio is 0.0218.

The licensed base impedance if 234 ohms with a good amount of inductive reactance. When Sprint and T-mobile changed their configuration on the tower, that impedance shifted dramatically.  The existing skirt is in fairly rough condition.  The bottom ring that connects to the ATU is made out of copper tubing.  It is attached to the skirt wires with steel saddle clamps, all are rusted and all of which are lose and can slide around.  At some point, the tubing filled up with water, then froze causing the tubing to split open.  At the top of the skirt, the jumper wire looks suspicious and the top ring does not go all the way around. The shorting stub to the tower looks like it is made out of battery jumper cable.  I purchased new cross wire clamps and found some spare copper weld skirt wire at another site.  Both the bottom ring and top ring were replaced as well as the shorting stub to the tower.

After the repair work was done, I had the tower crew reattach the short slightly below the last skirt to tower bonding point.  In that position, I found the impedance went way up.  Thus, going lower was going towards a resonance point.  I had them move the short up to the former shorting point and remeasured and found the impedance was 235 ohms, only 1 ohm off from the previously licensed values.

Initially, I thought it would be nice to find a better position for the shorting stub and get a lower base impedance.  This would make the whole antenna system work better (improve bandwidth, stability, etc).  However, there was a set of guy wires above the bonding point.  The tower crew would have had to disassemble the top ring to move above the guy wires.  We were running out of daylight and weather so I had them lock everything down where it was.  On a station running an all sports format that has no listeners and does not make any money, it does not make a lot of sense to spend gobs of money and time to rebuild the ATU for a new base impedance.  When I got the impedance back to within 0.11% of the licensed values, it was time to declare victory and go home.

The Energy Onix Pulsar transmitter

Engineering Radio: The Oh Dear God Edition.

I have been tasked with fixing one of these glorious contraptions. Aside from the usual Energy Onix quirks; design changes not reflected in the schematic diagram and a company that no longer exists, it seems to fairly simply machine. Unfortunately, it has spent its life in less than ideal operating conditions.

Energy Onix Pulsar 1000 in the wild. Excuse the potato quality photo

Energy Onix Pulsar 1000 in the wild. Excuse the potato quality photo

Upon arrival, it was dead in the water.  Found copious mouse droppings, dirt and other detritus within and without of the transmitter.  Repaired the broken start/stop switches, fixed the RF drive detector, replaced the power supply capacitors and now at least the unit runs.  The problem now is the power control is unstable.  The unit comes up at full power when it first switched on, then it drops back to 40 watts, then after it warms up more goes to about 400 watts and the audio sounds distorted.  This all points towards some type of thermal issue with one of the power control op amps or other composite device.

After studying the not always accurate schematic diagrams, the source of the problem seems to be carrier level control circuit.  This is based around a Fairchild RC4200AN (U10 on the Audio/PDM driver board) which is an analog multiplier chip.   That chip sets the level of the PDM audio output which is fed into the PDM integrator circuit.  Of course, that chip is no longer manufactured.  I can order one from China on eBay and perhaps that will work out okay.  This all brings to mind the life cycle of solid state components.  One problem with the new technology; most solid state components have a short production life, especially things like multiplier chips.  Transmitters are generally expected to last 15-20 years in primary service.  Thus, transmitter manufactures need to use chips that will not become obsolete (good luck with that), or purchase and maintain a large stock of spare parts.

In the mean time, the chip is on its way from China.  Truth be told, this fellow would be better off with a new transmitter.

The isocoupler and the SX2.5

Second post in the series, “things to do with a truck body tool box.”

We have this client who, several years ago, moved their translator to their AM tower. All is well for a few months, then the much beloved Harris SX2.5 transmitter begins burping.  The SX2.5 transmitter being of an age when, apparently, VSWR fold back circuits were just a gleam in Hilmer Swanson’s eye.  The correct description of the sound made over the air during this event would be “motor boating,” because that is what it sounds like.  Obviously, very undesirable.

Thus, the isocoupler was removed from the tower, dried out, water proofed and replaced.  That lasted about six months.

Once again, the isocoupler was removed from the tower, a capacitor was remounted, drain holes and a small vent added to the top of the unit and it was replaced.  That lasted about a year.

I am getting a little tired of this and so is the client.  Time to rethink the entire set up.

We had several left over parts from various AM decommissionings over the last few years which included these nifty sample loop isolation coils:

AM antenna system sample loop isolation coil

AM antenna system sample loop isolation coil

Why not repurpose one of these to make an isocoupler for the translator?

Enter; the truck body tool box.  This one is slightly smaller than the last one, measuring 23.5 x 18 x 16 inches (60 x 45 x 40.5 cm).

The isolation coil consists of 35 turns of 3/8 coax on an 11.5 inch diameter form.  The coil length is 15 inches.  I calculate the length of the coax on the coil to be out to be right around 100 feet using the π x D x (turns) formula.  I measured the inductance with my analyser, which came out to 200 μH.  Not to shabby.

Checking length of cable with TDR

Checking length of cable with TDR

The coax is Cablewave FCC38-50J which has a velocity factor of .81 and the TDR shows it to be 100 feet also.

Coil impedence and reactance

Simple coil impedance and reactance

At 860 KHz, the isolation coil presents 1,200 impedance.  I don’t think that will be good enough for that cranky old SX2.5.  I decided to make a parallel LC circuit (AKA a tank circuit) to bring up the impedance some.

Tank circuit formula:

tank_circuit

Where:

FR = Resonance frequency in Hertz
L = Inductance in Henrys
C = Capacitance in Farads

Given that I have two left over capacitors, one is a .001 μF and the other is a .0012 μF, those values determine where the coil needs to be tapped.  I also wanted to have a good bit of coil in the circuit on the tower side before the capacitor tap to dampen any lightning strikes on the tower.  Thus the inductance needs to be about 28 μH.

Using Wheeler’s coil inductance formula:

L= (d2 x n2)/(18d+40l)

where:

L = inductance in micro Henrys
d = coil diameter in inches
l = is coil length in inches
n = is number of turns

I removed a small portion of the outer jacket on the coil at approximately the 28 μH point (12 turns) then installed a .0012 μF capacitor.  I used a small variable capacitor to tune for resonance on the carrier frequency.  With this set up, at 860 KHz, there is >47,500 impedance.  That goes down to about 16,000 ohms +/- 10 KHz.

That should make things better.

Then I mounted the coil and capacitor in the truck body tool box.  There is a fair amount of stray capacitance from the box itself, which raised the resonant frequency by 5 KHz.

Device Under Test, initial testing of isocoil after fabrication

Device Under Test;  initial testing of isocoil after fabrication

Resonance is slightly above the carrier frequency with the permanent fixed .0012 μF capacitor.  I think this will change once the unit is connected to the station ground plane.  The network analyzer indicated there is too much capacitance in the circuit.  Unfortunately, this may be as good as it gets, however, the analyzer shows the impedances are still pretty high:

Frequency (KHz) Impedance (Ohms) Deviation from Carrier (KHz)
850 9,950 – 10
855 14,720 – 5
860 28,590 0
865 59,580 + 5
870 24,780 + 10

The base impedance of this tower is 34 ohms on the carrier frequency, so the isocoupler should be invisible to the transmitter across the 20 KHz occupied bandwidth of the station.

The FCC38-50J cable has a loss of 1.04 dB per 100 feet at 100 MHz, which is the figure I will use to calculate the insertion loss on the FM translator antenna system.

The old isocoupler is made with RG-214, but likely a somewhat shorter length.  RG-214 cable has a loss of 1.9 dB per 100 feet at 100 MHz.

Installation:

Isocoil mounted on back of ATU

Isocoil mounted on back of ATU

Isocoil mounted on back of ATU

Isocoil mounted on back of ATU

Before and after measurements with the network analyzer show a very slight change in the reactance at the tower base.  Nothing major and easy enough to tune out with the series output inductor of the ATU.

If I where to do this again, I would simply tap the coil at ten turns from the bottom, measure the inductance and install the proper value capacitor.  Since this had to be constructed with the parts on hand, less the truck body tool box, it because a bit cumbersome to get close to the resonant frequency.

All this got me thinking; there are other possible uses for such a design.  Crossing a base insulator with Ethernet cable always presents some unique problems.  I know the WISP forum that I read, they are always talking about how difficult it is to mount an antenna on an AM tower.  What if… armoured Cat5e or Cat6 cable was used with water proof RJ-45 jacks?  Something like that could carry Ethernet data and DC voltage past the base insulator to a three or four around sectorized access point and an edge switch or router mounted on the tower.

Armoured category cable specifications

Armoured category cable specifications

just thinking…

Anyway, it would not be hard to make coils and install capacitors for the right frequency

Прощаться!

This information is from an occasional reader who wished to remain anonymous.

Another AM station surrenders its license, this time from north of the border. CKSL, London, Ontario, Canada is gone for good.  Current owner, Bell Media, has determined that it would cost more to repair the deficiencies with the antenna system than economically feasible, especially considering it’s low ratings.  Here is their filing with the CRTC:

Bell Media is the licensee of CKSL-AM 1410, assuming stewardship of the station in 2013 as part of the Astral Media acquisition.

A technical review of the transmitter site was recently completed both by Bell Media and contractors, which has resulted in the determination that the AM array poses an unacceptable risk from a health and safety perspective.  The five towers are experiencing serious structural degradation and also require repairs to the aviation safety lighting system. In addition, the building which houses the transmitter has shifted off its foundation (as have several of the individual tower sheds).

Given these problems, Bell Media would need to make a significant financial investment to bring CKSL-AM’s transmitter up to compliance with Human Resources Development Canada, Industry Canada and NavCanada operational codes and standards, all of which is estimated to exceed $3 million dollars.

From a market perspective, CKSL-AM has consistently ranked last out of all ten commercial stations in the London market, both in audience share and revenue generation, over the last several years.  In fact, since 2013 the London market has seen radio revenues drop 4% and CKSL-AM generates the least amount of revenue of the stations in the market. Even with a significant investment in programming, this trend is unlikely to be reversed. 

In light of the significant capital costs coupled with the absence of revenue and audience share, Bell Media is respectfully requesting the revocation of the CKSL licence.

Well, 24/7 comedy will do that to you.  Somebody in the business said to me recently “The listeners are abandoning radio!”  No, it is the broadcast station owners who are abandoning their listeners and their cities of license.  I have a news flash for all current broadcast station owners; as surprising and radical as this might sound, bland, boring, canned, completely irrelevant, dismal, uninformative, unimaginative, unentertaining, dreary, stale, unenjoyable programming will drive away even the most loyal listeners.  People really want to listen to radio, it is an easy habit and readily accessible.  Radios are ubiquitous; they are in our kitchens, bedrooms, cars, hotel rooms, offices, restaurants, barber shops, etc.  That, however, may not always be the case, as more and more people move Spotify, Pandora, or Apple radio when they are tired of the disappointment.  I was listening to a certain sports radio format the other day and I kept waiting for something interesting to happen.  I waited and waited. I would say to myself; okay, this will be the segment when I will learn something or be entertained.  This upcoming guest will say something interesting.  Sadly, those expectations were never met and I will never tune into that station again. Elevator music would have been better.  Worse than sports radio, 24/7 comedy is the absolute death knell.  This is like saying; we are out of ideas and we do not care.

Here are a few pictures of the former CKSL-AM transmitter site:

CKSL antenna array

CKSL antenna array

CKSL_transmitter

CKSL transmitter building

CKSL_transmission

CKSL transmission line bridge

CKSL_tower

CKSL tower base

Actually does not look too bad, at least the field is mowed. I have seen much, much worse.  Those bolt together towers, though. I would bet that they are the real problem, bolts are deteriorating faster than the tower steel. Very likely all the towers need to be replaced and that is why the license is being surrendered.

If you are a radio geek, get out there and take some pictures of your favorite radio station.  If the current trends continue, eventually they will all be gone.

The Horns of a Dilemma

Alternate title: Building and ATU in a truck body tool box.

Alternate title II: I should get paid extra for this shit.

There is an AM radio station that is near death but the owners do not want it to go away.  Nor to they want to spend very much money to keep it around, thus the dilemma.  At the transmitter site, there are a multitude of problems; leaking roof, very old rusty ATU, rotting support posts and transmission line bridge, equipment racks rusting out, nothing is grounded properly, the building is full of junk, snakes and mice have moved in.  To further complicate things, the tower and transmitter building serve as an STL relay point for two of the market’s FM stations.  There is also two translators with antennas on the tower.  The ATU and tower light choke box are rusting through, which is causing arcing and broadband RF noise that is interfering with the FM station’s STL receiver.  There was a home made isocoupler for one of the translators that was allowing AM RF back into the building which was creating havoc with everything.  Because of this, the AM station is currently silent.  In short, it is a mess.

WCHN ATU

WCHN ATU

The red box on the bottom is the ATU, the plywood box on the top with the peeling yellow paint is the home made isocoupler, the tower light choke box is behind the isocoupler.

Crumbling old ATU output capacitor in series with tower

Crumbling old ATU output capacitor in series with tower

This was the capacitor that was feeding the antenna, .0041uf, 10KV 8 amps.

We started remediation on this last February, which is not optimum time for replacing rotting wooden posts.  However, we were able to clean out the building.  The leaking roof has been repaired.  I was able to find a few old racks from a Schafer Automation system to replace the rusted out original racks.  I began the process of grounding the equipment racks, the incoming transmission lines for the STL, etc.

Cool morning, Garter Snakes warming themselves on top of a Moseley DSP-6000

Cool morning, Garter Snakes warming themselves on top of a Moseley DSP-6000

Garter Snake

Garter Snake

We will have to find out how they are getting in, the plug up those holes.

Then there was the ATU and tower light choke enclosures.  Original to the 1952 sign on, they were past their serviceable days.  Since this is all being done on a budget and nobody wants to spend money on an AM station that has little or no listeners and even less revenue, we had a problem.

Then somebody suggested building an ATU in a truck body tool box.  Well…  This isn’t the Meadowlands, so if there are no other alternatives then okay, I guess.  Off to Amazon to order a tool box.  This particular unit seems fine, my only comment is on the gauge aluminum (or aluminium if you prefer), which is slightly thin for holding up all those parts.

ATU built in a truck body tool box

Fabrication shop, ATU built in a truck body tool box

Still, the box itself is nice enough and certainly better than the old one.  I was able to reuse the inductor and the Delta current meter but the old Sangamo capacitors crumbled in my hands when I removed them.  I also saved the feed through bowls, J-plugs and other parts.  I used some copper strap to run a good RF ground from the input to the ground connection.  Overall, I am pretty pleased with the finished product.  It is a little bit tight in there, but this station only runs 1 KW, so it should be fine.

Replacement ATU mounted

Replacement ATU mounted

So, new pressure treated posts installed, the box was mounted and the transmission line connected.

Replacement ATU under power.

Replacement ATU under power.

Reused Schaffer Automation racks, much better than the 1950's Gates racks

Reused Schafer Automation racks, much better than the 1950’s Gates racks

The reused racks are old, but serviceable and a big improvement over the old, rusting out racks.  I was able to bond each rack to the ground strap that used to connect to the RCA BTA-1 transmitter.  There is one more rack to install to the right of these two.  That should give us more than enough rack space for this site.

The station is back on at full power and not interfering with the FM STLs or the translators.  You can actually touch the rack and not get an RF burn!

We are also working on an air conditioner.

Other work at this site; cleaning out the building, replacing the tower light photocell, installing a ground buss bar, some STL lightning protectors, dress the transmission lines, etc.  It is a work in progress.

 

Axiom


A pessimist sees the glass as half empty. An optimist sees the glass as half full. The engineer sees the glass as twice the size it needs to be.

Congress shall make no law respecting an establishment of religion, or prohibiting the free exercise thereof; or abridging the freedom of speech, or of the press; or the right of the people peaceably to assemble, and to petition the Government for a redress of grievances.
~1st amendment to the United States Constitution

Any society that would give up a little liberty to gain a little security will deserve neither and lose both.
~Benjamin Franklin

The individual has always had to struggle to keep from being overwhelmed by the tribe. To be your own man is hard business. If you try it, you will be lonely often, and sometimes frightened. But no price is too high to pay for the privilege of owning yourself.
~Rudyard Kipling

Everyone has the right to freedom of opinion and expression; this right includes the freedom to hold opinions without interference and to seek, receive and impart information and ideas through any media and regardless of frontiers
~Universal Declaration Of Human Rights, Article 19

...radio was discovered, and not invented, and that these frequencies and principles were always in existence long before man was aware of them. Therefore, no one owns them. They are there as free as sunlight, which is a higher frequency form of the same energy.
~Alan Weiner

Free counters!