AM station downgrade

I have been working on another formerly direction class B AM station, this one is in Rutland, VT.  WSYB has been on the air since 1931 with the same call letters serving the east central part of Vermont.  In 1931, it was operating on 1500 kc with 100 watts of power.  In March 1941 it moved to 1490 kc with 250 watts before settling, a few months later, on 1380 with 1,000 watts, directional night time protecting CKPC in Brantford, Ontario, Canada.

The transmitter site was first located at 80 West Street (now known as BUS US 4), in Rutland.  It was moved to its current Dorr Drive (Formerly Creek Road) location in 1938, when the station was requesting a power upgrade to 250 watts.  Whilst cleaning out the old transmitter building, a copy of an operating log, dated December 7, 1945 was discovered in the attic above the transmitter room:

WSYB transmitter log, 1945

Back from the time when readings were required every 30 minutes.

In 1956, WSYB was allowed 5,000 watts daytime non-directional with 1,000 watts night time directional.

At some point in the early 1990’s, the original towers were replaced with solid leg Pirod towers, each 195 feet tall.

After that, things went the way things do; AM steadily declined in favor of FM, local programming was mostly replaced by syndicated satellite stuff, there were several transfers of ownership, etc.

A translator on 100.1 MHz was added in 2016; the two bay Shively antenna was installed at the top of the South West tower.   There is local programming on the station from 6am to noon on weekdays.  There may also be some gardening shows and other such programming on weekends.

The current owner has decided, like they have done in other markets, that AM directional antenna systems are a maintenance nightmare, the risk of FCC sanctions are high for an out of tolerance antenna array, the ratings and income from the station do not justify the risk/cost.  Thus, non-directional night time operation was applied for and granted.  The station is now a Class D with 25 ass kickin’ night time watts.

WSYB had a two tower night time antenna system.  The tower closest to the building (SW) was also the daytime, non-directional tower and it now holds the FM translator antenna and STL antenna.  Thus, it was decided to ground that tower and keep those antennas in service.  The far tower (NE), which was the second tower of the night time array would become the AM antenna.  The night time ATU was built for less than 1,000 watts input power, so several components needed to be upgraded for 5,000 watt operation.

WSYB rebuilt ATU
WSYB rebuilt ATU

I had available these nice vacuum capacitors that came out of another decommissioned antenna system.  The vacuum capacitors are great because the voltage/current ratings are much higher than the mica capacitors that were in the circuit before.  You can see black goop where one of the Sangamo mica capacitors on the input leg failed several years ago.  These vacuum capacitors are rated at 15 KV and the current rating at 1.38 MHz is probably in the 70-80 amp range.  I had to move the base current meter from the former daytime (SW) tower out to the NE tower.  The day night switch was taken out of the circuit.  The transmission line to the far tower was replace with 7/8 inch foam dielectric cable.  A slight touch up of the coil on the input leg of the T network was all that was required to bring it into tune.

The electric lines to the tower have been temporarily disconnected.  As soon as they are reconnected, I will vacuum out all the mouse crap and other debris.  The ATU building also needs some work sealing in up against the elements.

The tower base impedance is 75 ohms, +j95 making the base current 8.6 amps daytime and 0.58 amps night time.

WSYB radiating element
WSYB radiating element

For me, the magic of radio exists at that boundary between the real objects (towers and antennas) and the ether.  The transference of electrical voltages and currents into the magnetosphere is something that still fascinates me to this day.  Coupling a 5,000 watt medium wave transmitter to a tower and watching it work is something that I will never grow tired of.

Working with rigid transmission line

Installing transmitters requires a multitude of skills; understanding the electrical code, basic wiring, RF theory and even aesthetics play some part in a good installation.  Working with rigid transmission line is a bit like working with plumbing (and is often called that). Rigid transmission line is often used within the transmitter plant to connect to a four port coax switch, test load, backup transmitter and so on.  Sometimes it is used outside to go up the tower to the antenna, however, such use has been mostly supplanted by Heliax type flexible coax.

We completed  a moderate upgrade to a station in Albany; installing a coax switch, test load and backup transmitter.  I thought it would be interesting to document the rigid line work required to complete this installation.  The TPO at this installation is about 5.5 KW including the HD carriers.  The backup transmitter is a Nautel VS-1, analog only.

This site uses 1 5/8 inch transmission line.  That line is good for most installation up to about 10-15 Kilowatts TPO.  Beyond that, 3 inch line should be used for TPO’s up to about 30 Kilowatts or so.  Even though the transmission lines themselves are rated to handle much more power, often times reflected power will create nodes along the line where the forward power and reflected power are in phase.  This can create hot spots and if the reflected power gets high enough, flash overs.

Milwaukee portable band saw
Milwaukee portable band saw

Working with rigid line requires a little bit of patience, careful measurements and some special tools.  Since the line itself is expensive and the transmission line lengthener has yet to be invented, I tend to use the “measure twice and cut once” methodology.   For cutting, I have this nice portable band saw and table.  This particular tool has saved me hours if not days of work at various sites.  I have used it to cut not just coaxial line and cables, but unistrut, threaded rod, copper pipe, coolant line, conduit, wire trays, etc.  If you are doing any type of metal work that involves cutting, this tool is highly recommended.

Milwaukee 6230N Band Saw with cutting table
Milwaukee 6230N Band Saw with cutting table

Next point is how long to cut the line pieces and still accommodate field flanges and inter-bay line anchors (AKA bullets)?  The inner conductor is always going to be sorter than the outer conductor by some amount.   Below is a chart with the dimensions of various types of rigid coaxial cables.

Length cut chart for various sizes of rigid coaxial cables

When working with 1 5/8 inch rigid coax, for example, the outer conductor is cut 0.187 inches (0.47 cm) shorter than measured distance to accommodate the field flange. The inner conductor is cut 0.438 inches (1.11 cm) shorter (dimension “D” in the above diagram) than the outer conductor to accommodate the inter bay anchors. These are per side, so the inner conductor will actually be 0.876 inches (2.22 cm) shorter than the outer conductor.  Incidentally, I find it is easier to work in metric as it is much easier to measure out 2.22 CM than to try and convert 0.876 inches to some fraction commonly found on a tape measure.  For this reason, I always have a metric ruler in my tool kit.

Altronic air cooled 20 KW test load
1 5/8 inch rigid coax run to Altronic air cooled 20 KW test load
1 5/8 inch rigid coax and 4 port coax switch mounted in top of Middle Atlantic Rack
1 5/8 inch rigid coax and 4 port coax switch mounted in top of Middle Atlantic Rack

The next step is de-burring.  This is really critical at high power levels.  I use a copper de-burring tool commonly used by plumbers and electricians.  One could also use a round or rat tail file to de-bur.  The grace of clamp on field flanges is they have some small amount of play in how far onto the rigid line they are clamped.  This can be used to offset any small measurement errors and make the installation look good.

Happy New Year!

After a bit of reflection and a few good conversations over the New Year’s Holiday, I decided that I should continue my work on this blog.  I would like to thank all those that have stuck by and waited.  I have received numerous emails and messages off line, all of which have been read and appreciated.

Since the abrupt stoppage last July, which was absolutely necessary for me, many things have happened within the business.  Fortunately, during the hiatus, I was still taking pictures.  After sorting through them, here are a few interesting things that happened:

At one of our client’s AM transmitter sites in Albany, NY a 2.6 Million Watt solar system has been installed.

WROW-AM Steel mounting poles on antenna array field
WROW-AM Steel mounting poles on antenna array field

This project required many steel mounting posts be driven into the ground around the AM towers.  I don’t even know how many, but I would hazard a guess of over three hundred.  Each one of those mounting posts was hand dug down a depth of 6-10 inches to look for ground wires.  Where ever a ground wire was found, it was moved out of the way before the post was set.

WROW-AM ground wire moved out of way
WROW-AM ground wire moved out of way

Basically the solar array covers about 1/2 of the antenna array field.  All of the steel mounting hardware is tied into the ground system, making, what I am sure is a pretty large above ground counterpoise.

WROW-AM solar panel mounting hardware
WROW-AM solar panel mounting hardware

View from the south looking north:

Solar Array installed on WROW antenna array, Glenmont, NY
Solar Array installed on WROW antenna array, Glenmont, NY

View from the north, outside of the transmitter building, looking south:

Solar Array installed on WROW antenna array, Glenmont, NY

Power company interface and disconnect:

Solar Array utility company disconnect, Glenmont, NY
Solar Array utility company disconnect, Glenmont, NY

The utility company had to upgrade the transmission lines to the nearest substation to handle the additional power produced by the solar system. All in all, it was a fun project to watch happen.

At a certain studio building, which is over 150 years old, the roof needed to be replaced.  This required that the 3.2 meter satellite dish and non-penetrating roof mount be moved out of the way while that section of the roof was worked on.

3.2 meter satellite dish

Dish ready to move, all of the concrete ballast removed and taken down from roof.  The roofing contractors constructed a  caddy and the entire dish and mount was slid forward onto the area in front of it.  Since the front part of the roof was not reinforced to hold up the satellite dish, we did not reballast the mount and the XDS receivers ran off of the streaming audio for a couple of days until the dish was put back in its original position.

3.2 meter satellite dish ready to move
3.2 meter satellite dish ready to move

A couple of other studio projects have been underway in various places.  Pictures to follow…

One of our clients sold their radio stations to another one of our clients.

There has also been a bankruptcy of a major radio company here in the good ol’ US of A.  Something that was not unexpected, however, the ramifications of which are still being decided on in various board rooms.  One of the issues as contractors is whether or not we will get paid for our work.  All things considered, it could be much worse.

Learned a valuable lesson about mice chewed wires on generator battery chargers.  I noticed that the battery charger seemed to be dead, therefore, I reached down to make sure the AC plug was in all the way.  A loud pop and flash followed and this was the result:

Arc burns, right hand
Arc burns, right hand

My hand felt a bit warm for a while.  The fourth digit suffered some minor burns.  There is at least one guy I know that would be threatening a lawsuit right now.  Me, not so much…  All of the high voltage stuff we work on; power supplies that can go to 25 KV, and a simple 120 VAC plug is the thing that gets me.

The return of the rotary phase maker.

Rotary phase maker, Kay Industies T-10000-A

Mechanically derived 3rd phase used when the old tube type transmitter cannot be converted to single phase service.

Those are just a few of the things I have been working on.  I will generate some posts on current projects underway.  Those projects include a 2 KW FM transmitter installation, another studio project, repair work on a Harris Z16HD transmitter, etc

It is good to be back!