The surreal trip to the WICC transmitter site

What could be so bad about going to an AM transmitter site on an peninsula off of the Long Island Sound.  Sounds pretty nice, right?  It began just so, driving through the town of Stratford Beach parking lot to the construction gate, the towers were visible off in the distance.  A nice crushed gravel road across the barrier island, I have certainly been to worse places.

WICC towers pleasure beach island
WICC towers Pleasure Beach Island, CT

And then, things begin to look a little bit different.  It is really hard to put into words, seems like some other country.

Pleasure Beach Bungalows
The beginning of the Pleasure Beach Bungalow Colony

It turns out this is not quite the nice trip after all.

Pleasure beach lawless zone
Pleasure Beach Lawless Zone

I’ve been to several so called “developing areas” like Port Au Prince, Hatti for example.  Nothing ever looked this bad.

Pleasure Beach ocean side bungalow
Pleasure Beach Ocean Side Bungalow

I can imagine some family coming here every summer to spend time at the beach.

Burned out bungalows
Burned out bungalows

What anarchy looks like.

Pleasure beach burned out cottage
Pleasure Beach burned out cottage

The back story is this:  From the 1920’s up until 1996, Pleasure Beach was a nice seasonal oceanside bungalow colony, complete with an amusement park.  These cottages (but not the land they were on) were owned by people from the surrounding cities and towns and the entire area appeared to be quite nice in it’s day.  Then, in 1996, the wooden bridge that connected Pleasure Beach to Bridgeport burned.  There are several theories; crack heads, radical environmentalist, etc.  The city of Bridgeport did not rebuild the bridge, which meant the only access was by walking from the Town of Stratford beach parking lot, at trek of at least a mile or longer.  In 2007, the town of Stratford decided not to renew these land leases and the building owners were forced to remove any remaining items they wanted by barge.  Soon thereafter vandals began walking down the peninsula from Stratford.  Slowly, most of the bungalows were broken into and several were burned.  This is mostly the work of “kids,” who, because they are under the age of 18, get a slap on the wrist and returned to their parents.  Oh, those wacky kids, what will they do next?

Truth be told, they should be the ones out here cleaning this up, for free.

Finally, this year, the city began tearing down and cleaning up the remaining buildings, trying to put the former bungalow colony “back to nature.”

WICC transmitter building
WICC transmitter building

The transmitter site for WICC moved here in 1932.  This building contained a night time operating studio, kitchen, bathroom, and bedroom.  I can imagine hanging out here some summer night, spinning tunes and having a good time.  The former amusement part is just out of the picture to the left.  At the amusement park, there was a carousel, a big snack bar, a dance hall and an area for portable rides like Ferris Wheals and such.

Now the building is full of disused gear, old carts, transmitter and tower parts, the water has been shut off and I’d not want to be out here at night under any circumstances.

WICC south tower
WICC north tower

The antenna array consists of two 300 foot Milliken towers, originally from WNAC.  Many people mistakenly think these are Blaw-Knox towers.  Milliken preceded Blaw-Knox by several years.  They built and designed towers around the world for radio and electric transmission.  In the late 1930’s they were bought out by Blaw-Knox, which kept the design.  I love these tapered self supporters, they have survived several major Hurricanes since 1932.  The south tower is about 150 yards from the Long Island Sound.  Salt air seems to do them no harm, either.

WICC Milliken tower, south looking up
WICC Milliken south Tower, looking up

The station operates at 1 KW day, 500 watts night, DA2.  The towers are 60 degrees tall, space 149 degrees.  That is a little short, however, they are surrounded by salt water, so the signal goes like gangbusters.  Because they are short, the impedances are low, about 10 ohms for night time and 30 ohms for daytime.  Since the towers  are so wide, the impedances are flat far beyond 50 KHz either side of the carrier, which makes it a nice broad banded antenna system.  The 1932 phasors and ATUs were redone in 1972.  All of the common point impedance measurements are still posted on the wall.

WICC Harris SX-1A, Phasor and Harris BC1H
WICC Harris SX-1A, Phasor and Harris HC1H

The main transmitter is a 1990 Harris model SX-1A.  It seems to be reliable enough, my experience with the SX-1 is it has an overly complicated control system.  The back up is a Harris BC1H, a sort of hybrid solid state tube unit, which is also reliable.

Frequency voltage meter
WICC frequency and voltage meter

This high tech test and measurement center is attached to the incoming electrical service.  Over the years, there has been some quality control issues with the incoming electrical service, mostly due to Osprey’s building nests on the cross arms.  During rain storms, these nests catch on fire and kill the power to the site.  The power company is in the process of redoing the electrical service to the building.

This is a video of the former amusement part and cottages shot two years ago, when the cottages were more or less intact. It is a bunch of stills set to Pink Floyd music:

Looks like they all just got up and left.

Tower Safety Equipment

The tower climbing video that has gone near viral pointed out a few things.  Climbing towers is dangerous business, best left to those who are trained for it and have the insurance.

It is true that tower climbing contractors have the responsibility to protect their own workers while working on a clients tower.  That does not completely absolve the tower owner from liability.  The it is incumbent on the tower owner to provide a safe structure to climb.  This can mean the mechanical integrity of the tower, reduction of transmitter power while workers are in high RF energy fields, and providing the proper permanently attached safety equipment on the tower itself;  Climbing ladders, ladder safety cages, rungs, elevators, and fall arresting gear.

In that tower video post, I mentioned something called a safety climb.  That is a cable, usually 3/8 inch stainless steel aircraft cable, attached, about eight inches from the climbing surface like this:

Western Electric 200 foot tower with retro fitted safety climb[
Western Electric 200 foot tower with retro fitted safety climb
The tower itself was built in 1959 and did not have this equipment when new.  This was a retro fit kit, installed in 2003, I believe.

The tower climber wears a harness with a special karabiner attached to the front and waist level.  When climbing this ladder, the karabiner slides up the cable.  If he were to fall, the karabiner has an auto locking or braking mechanism that would stop his fall.

Tower safety climb
Tower safety climb, attached to climbing ladder

Many tower climbers, especially those that have been in the business for a while, do not like these things.  When climbing, especially if one has long legs, the tendency is to bump your knees on the bottom of the next ladder rung.  This is because the belt holds the climber’s waist in making it difficult to get the rear end out, away from the ladder the way most people like to climb.  The alternative is to climb with the knees spread apart, like a frog, which is hard on the hamstrings and quite literally, a pain in the ass.  However, if a tower is so equipped, it must be used.

I have, wherever possible, retro fitted towers with these devices.  Of course, all new towers come equipped with them. In some situations, it is not possible to retro fit towers with safety climbs, either because there is no attachment point at the top of the tower that meets the OHSA spec, there is not a climbing ladder, or it would affect the tower tuning, as in an AM tower or near a TV or FM antenna.

Hundreds of gallons of ink have been spilled by Los Federals in OHSA regulations 29 CFR 1926 and 29 CFR 1910.268(g) regarding fall protection and fall protection equipment for telecommunications workers.  In this litigious world we live in, tower owners and or their on site representatives should know these rules and make sure they are followed.

Diplexed Directional AM stations

Pictures and story sent along by occasional reader John.  I worked on diplexing an AM station in 2003, it was a 5 KW and a 10 KW on a single tower.  Those power levels require using some pretty large components, however, the set up was pretty straight forward.  Each station had it’s own ATU (antenna tuning unit) which was then fed into band pass filters to isolate the other station and coupled to the tower.  The ATUs were set up as low pass and high pass filters respective to their frequency.  The whole thing had something like 45 dB isolation, which worked(s) very well.

Doing this with a directional antenna system is another problem altogether.  Add to that the tight filter networks required as the station are only 100 KHz apart.  One saving grace, the power levels are relatively low.  The higher the power gets, the more the magnetic fields build up around the coils and mutual coupling becomes an issue.

As John notes:

1560 (WGLB) owns the site and has been there for about 8 years. Originally WGLB was in Port Washington, WI with a BTA-250M running into a 2-tower array. The city of license was changed to Elm Grove, and this necessitated a move about 30 miles south to the site shown. A 6 tower combination array was needed to protect 1550 in Lake Geneva, WI, 1550 in Madison, WI, 1550 in Morris, IL, 1540 in Hartford, WI, 1570 in Appleton, WI, 1530 in Cambpellsport, WI and 1530 in Elmhurst, IL. A 4-tower in-line array is used on 1560 during daytime, and a 4-tower parallelogram with the two south towers switched in and the North two in-line towers switched out (floated) for 1560 nighttime operation.

WGLB WJTI combined directional antenna system
WGLB WJTI combined directional antenna system

Looks interesting.  Fortunately the towers are not required to be painted or lighted, that is a big maintenance headache.

WGLB WJTI antenna field
WGLB WJTI antenna field

Another thing to note; the site looks well maintained, the grass is mowed, no trees growing up by the transmitter building, the building is painted, etc.  Likely these stations are locally owned and making a modest profit, not some abandoned after thought.

Antenna Tuning Units
Antenna Tuning Units

Each tower has separate ATU’s for each station.  The ATU’s then feed what is likely a very tight band pass filter for each station, which then combines the two signal and feeds the tower.  John continues:

An arrangement was designed when 1460 approached 1560 about leasing tower space for moving 1460 (ND-D) from Racine, WI north to West Allis, WI. This design is ingenious in that the array tower usage between the two stations is reversed for day-night operation! In other words, the 4-tower in-line array is used for 1460 nighttime, and the 4-tower parallelogram array consisting of the four south towers is used for 1460 daytime operation.

WJTI Phasetek antenna phasor
WJTI Phasetek antenna phasor

The 1460 pattern is pretty tight to protect 1470 at West Bend, WI approximately 30 miles north, and nighttime also to protect 1460 in DesMoines, IA. The friendly folks at Phasetek (Quakertown, PA) did the 1460 phasor and notch traps at each tower to prevent cross-modulation (inter-modulation) of the two signals feeding the towers, and after assembly on-site tuned up like a dream!

And that is saying something.  I have dealt with phasor manufactures before, sometimes they nail it, sometimes they don’t.  Tune up can be a real challenge, which tends to put everyone on edge.

I might add that the high-tension electrical transmission towers nearby were de-tuned at 1560 years ago, and upon checking were broad enough to not require any further de-tuning at 1460! Another attribute of this design is that if something ever changes in the future, the deal can be easily be dissolved, because there is no mutual ownership of any equipment on site! It is truly one of the best “Win-Win” instances of AM station directional antenna combining I have ever seen!

It is good to see stations taking advantage of co-location these days.  It is a great way to save money on real estate and hassles with the zoning boards, who all see dollar signs when someone talks of putting up a tower.  With the amount of computing power and the lessons learned in the past 90 years or so, we are beginning to get this medium wave broadcasting thing down.

The first radio station licensed to Albany, NY

Although not the first station in the area, that honor goes to WGY. In fact, RPI licensed WHAZ in 1923, which makes it the second regional station.  Starting on 1430 Khz as WOKO in New York City in 1923, the station made a few stops along the way.  One of those was on Mt. Beacon from 1928 until 1930.  The original transmitter building is still there, although the tower was taken down in 2005 to make way for the DTV stations that moved in.    I always wondered why an FM tower on the top of a mountain had a base insulator.

WDDY towers
WDDY towers, Bethlehem, NY

In 1930, WOKO was sold and moved to Albany, NY, becoming the first station licensed to that city.  The transmitter site is located off of Kenwood Avenue in the town of Bethlehem, about 4 miles south of down town Albany.  It first signed on with 1 KW, increasing to 5 KW in 1947.   This is the original transmitter site, but the towers were redone in the mid 1970’s.  The towers themselves are 130 electrical degrees (235 feet) tall.  Like all AM stations, for years it serviced the community until it was gradually reduced to a satellite repeater, now owned by Disney.

WDDY transmitter site
WDDY transmitter site

The original transmitter building is in the back, the front was added in the 1970’s when the studios and offices colocated with the transmitter.  Prior to that, they were in downtown Albany.

Nautel XR6 Medium wave broadcast transmitter
Nautel XR6 medium wave broadcast transmitter

The Harris BC5H transmitter was replaced with a Nautel in 2006.  The Harris AM H series transmitter has a pair of transistors on the audio driver board which were unique to that transmitter and no longer manufactured.  There are no equivalent replacement part.  Once those transistors fail, the transmitter is done.

I really think that AM could make a comeback, but the following conditions need to be met:

  1. Kill AM HD radio.  Kill it dead.
  2. Cut away the dead wood.  Those stations that are not making money, have not made money and have no hope of ever turning a profit again.  Most of these are owned by large consolidator that cannot yet afford to write off the bad investment.  More and more will be spun off and given to MMTC and others.  If they can make a go of it, good.  If not, then the stations will go dark and eventually surrender their licenses.  We have one like that around here that basically turns it’s transmitter on one day a year to avoid license forfeiture.  That should stop, either they use it or loose it.
  3. FM radio will continue to be the investment bank darling, in spite of lower and lower listeners and revenue.  This will lead to more and more translators, HD radio, LPFM and other things being shoe horned into an already crowed band, creating AM like conditions on the FM band.
  4. Those that can take on the challenge of an AM station should immediately begin looking at reducing maintenance costs.  Directional antennas are money holes, if at all possible, get rid of the DA in favor of single tower closer to town.  Diplexing with another AM is a great way to save money and the costs of building a new tower.  Using a taller tower, up to 190 electrical degrees, will daytime signal and reduce the radiation angle (vertical) of the tower, thus permitting better PSSA, PSRA and or night time operation.
  5. Local programming.  Local sports, local politicians, local bands, local church services, local events, etc.  Local.

But anyway…