Automation Systems

Radio Automation Systems are nothing new under the sun. As Marconi tapped out his famous S, he was likely thinking “We should get a machine to do this…”

Broadcast stations have been installing different types of automation since the mid 1950’s and early 1960’s.  It was touted as a way to free up announcers so they could do more important things.

While cleaning out an old studio/transmitter building and getting things ready for demolition, I found a stash of old product brochures for various automation systems from the 60’s, 70’s and 80’s.  It looks like the previous owner used to go to the NAB every year.  How many radio guys got their start on the overnight shift changing out reels?  I know a few.

Gates automation system brochure, circa 1965
Gates automation system brochure, circa 1965

The Gates Radio Corporation had a fairly standard reel to reel system in three different configurations.  These systems were pretty pricey in their day.  According to the 1966 price list:

  • The Automate 244 cost $7,275.00 ($58,837.00 in 2020)
  • The Automate 484 cost $12,210.00 ($102,946.00 in 2020)
  • The Automate 1007 cost $17,150.00 ($138,799.00 in 2020)

Those are for stereo systems, mono systems cost about $500.00 less.  Each one of those systems ran one station.

Gates Automate 244 events thumb wheel
Gates Automate 244 events thumb wheel

The larger the system, the more events it could trigger.  I have never run into one of these in the wild.

Long form satellite shows began to surface in the early 1980’s. Things like all news formats and overnight talk shows.  I have had nightmares were everyone walks around saying “This is Larry King, you’re on…” while UFO’s fly overhead and next door neighbor, Jim Hightower, buries PCB’s in his back yard not more than 200 feet from his house.

Broadcast Electronics Control 16 radio automation system
Broadcast Electronics Control 16 radio automation system

Broadcast Electronics had the Control 16 system in the 1980’s that ran off of a very basic computer system that could handle 3,000 events with the standard RAM configuration and up to 9,999 events with additional RAM.  This was ideal for multiple program sources; music on reel machines, satellite syndicated talk or music formats, etc.  No longer were these machines simply running the overnights.

Schaffer 901 radio automation system
Schafer 90x radio automation system

Schafer is perhaps the most know analog tape automation, at least to me.  I know of several of these systems that were in operation through the mid 1990’s.  By this time, long form satellite music formats had become the rage.  However, there were still a few stations using reel to reel music services.

I particularly like this flyer from IGM:

IGM (International Good Music) brochure, circa 1971
IGM (International Good Music) brochure, circa 1971

By the mid 1990’s, these tired old dinosaurs where being removed.  Still, the mechanics of the operation were a thing to behold.  It was nice because you could hear the relays snap shut after decoding a 25/35 Hz tone or one of the Mutual Radio be-doops.  The cart-o-matic would chug through the break until the liner fired and then back to the bird.  If there were any issues, one simply needed to stand there and watch which part of the machine malfunctioned.

Schaffer logging system
Schafer logging system

Computer based systems like Computer Concepts DCS, Arrakis Digilink and Audio Vault came along, which got rid of the analog tape.  Instead they stored audio on hard drives.  Those early systems hard drive space was a premium, so usually at least 3:1 compression was needed to fit all the commercials onto the drive space available.

My first brush with Audio Vault was in 1994 at WGY in Schenectady, NY.   It was a pretty good system if you could understand the .ini files.  As the BE tech support guys used to say “You can program it to turn the coffee pot on if you wanted to.”

Nowadays, what used to be a studio location is more akin to a content distribution node.  This rack combines music and commercials stored locally on hard drives with out of town voice tracks and serves as the program source for eleven radio stations.

Radio Automation, 2020 style
Radio Automation, 2020 style

It works remarkably well, as long as the windows operating system stays functional.

Gone and apparently forgotten

Can a 50,000 watt AM station disappear from the airwaves and no one notice?

The answer is yes, if you live in the Albany, NY area.  WDCD, 1540 KHz, (formerly WPTR) has surrendered its license to the FCC last Friday, September 28, 2018.  Seventy years on the air and quite the legacy as a Top-40 station in the 60’s and 70’s.

Unfortunately, the station had fallen on hard times the last few years, being silent twice for long stretches of time.  In the end, I suppose it was simply time to pull the plug.

This was my first CE gig in the early 1990’s.  What I remember was, I had a lot of fun working there.

So long and thanks for the memories.

 

WKIP

This was the radio station that I listened to (or rather, my parents listened to) when I was a very young kid.  From this source, things like school closings, weather, lunar landings, news, sports and traffic could be heard.  At one point, there was a guy called the “Traffic Hawk,” (real name Don Foster) who flew in a Cessna 172 east and west over main street in Poughkeepsie advising drivers of any slow downs in the area.  That’s right, Poughkeepsie, New York, population 30,000, had it’s own eye in the sky, broadcasting live from the aircraft overhead.  Actually, I think he also flew up and down South Road (US Route 9) in the vicinity of the IBM plant, which employed quite a few people in those days.

There was also a guy who tried to break the Guinness Book of World Records by staying awake the longest, this happened several times.

For me, it was the school closings.  I hated school with an absolute passion.  Everyday, I would ride the school bus and say a little prayer; “…please God, make it today.  Make the boiler stop working, or the electricity to go out.  Make the kitchen catch on fire or the roof to cave in.  You are a great and mighty God and I don’t ask for much.  Please destroy my school today.”  Alas, God did not seem interested in this.

Anyway, back to the topic at hand.

WKIP first signed on in 1940 with the studios and transmitter located at The Nelson House, 42 Market Street, Poughkeepsie.  That building is long gone and  the location appears to be the parking lot for the Dutchess County Office building.  Being neighbors with some influential guy from Hyde Park made for a nice dedication speech:

It signed on with a power of 250 watts on 1,420 KC on June 6th, 1940. Soon thereafter, it changed frequency to 1,450 KC as a part of the AM band shift brought about by NARBA.

Over the years, the station went through several ownership changes. The first major technical change came in 1961, when the station transmitter site moved to it’s current location, then called Van Wagoner Road, now Tucker Drive. The station increased power to 1,000 Watts and installed a direction antenna for daytime use.  It is one of those rare night time non-directional, day time directional stations.

The directional antenna consists of two towers; tower one is 180 degrees tall (103.4 Meters or 340 feet) with 35 degrees of top loading.  That is used for both the day and night time array.  Tower two is 85 degrees tall (48.8 Meters or 160 feet) and is used only for the daytime array.  This pushes the major lobe of radiation towards the north.  I don’t know the reasoning behind that, but somebody spend a good amount of money to make it so.

Here is a air check from the early 1980’s.  Weather on that day was “Sunny, cloudy, whatever… take your pick.”

Good old Steve Diner.

Today, the station looks like this:

The 1961 WKIP transmitter building with tower
The 1961 WKIP transmitter building with tower

When I was growing up, my cousins lived within walking distance of this. We used to come over than throw rocks at the tower when the station was unmanned on Saturdays and Sundays. At least, I think it was unmanned because no one ever came out and yelled at us.

WKIP backup transmitter, phasor and main transmitter
WKIP backup transmitter, phasor and main transmitter

Mid 1980’s MW-1A still runs. The BE AM1A is the main transmitter. The phasor is the Original 1960’s Gates Phasor.

This video shows how the studios used to look, before they were rebuilt by Clear Channel Circa 2002 or so. At about the 2:02 mark, you will see the room pictured above as it looked in 1990.

The space between the video above and the picture below looked bad with nothing in it. It looks better now.

WKIP clock
WKIP clock

That clock is a collectors items and belongs in a museum.

Speaking of Radio…

I was talking to a friend from Russia about history, my job and various other things that are going on in my life. I received this reply, which I thought was interesting on a number of levels:

I’m glad we are on the same page about the era of the ‘cold war’. We were interested in your life even more than you in ours. We had almost no sources of information except for ‘The morning star’ which is a newspaper of the Communist party of Great Britain. The Voice of America and the Liberty (or Freedom, I have no clue because for us it was ‘RADIO SVOBODA’) were extremely hard to tune on. All foreign broadcasts were jammed. So to listen to the station you should maximize the volume up to the limit which was dangerous. Soviet houses are not at all soundproof and your neighbors could easily rat on you. Since that time I’d been dreaming of a small radio with could receive a clear signal from abroad. Of course we have the Internet broadcasting now but they often use old recording instead of live air and the signal depends on your data carrier. You should be online, you should have an app and unlimited data on your contract, your phone should be charged all the time. Too many conditions. Unfortunately a lot of foreign sites are banned here and the trend is to make this number bigger and bigger.

I find that perspective interesting.  We take for granted our ability to listen to information and listen to different points of view, even those we don’t agree with.  There are still trouble spots in the world and some people are not as fortunate.  It is very easy to block internet traffic and there are several countries that currently block access to some or all of the internet, for the safety of their citizens, no doubt.  Ideas are dangerous.

VOA/RFE transmitter site, Biblis Germany
VOA/RFE transmitter site, Biblis Germany. Photographer: Armin Kübelbeck, CC-BY-SA, Wikimedia Commons

In the last ten to fifteen years, many large government shortwave broadcasters have reduced or eliminated their programming favoring an internet distribution model.  This is a mistake.  It is very difficult to successfully jam terrestrial radio broadcasts.  Shortwave Facilities are expensive to develop and maintain, there is no doubt about that.  However, as the Chief Engineer from Radio Australia (ABC) once told me “HF will get through when nothing else will.”  Ironically, ABC has eliminated its HF service on January 31, 2017.

It seems to me that a sort of “Shortwave Lite” version of broadcasting might be the answer.  Use more efficient transmitters with lower power levels closer in to the target areas.  Such transmitters could be coupled to rotatable log periodic antennas to target several listening areas with one system, thus greatly reducing the number of towers and land required.  Solid state transmitters with a power of 10-50 KW are much, much more efficient than their tube type brethren.

DRM30 (Digital Radio Mondiale) has not gained wide spread use in the MF and HF bands.  Like it’s HD Radio counterpart, lack of receivers seems to be one of the adoption issues.  As of 2017, there are only four DRM30 capable receivers for sale not counting software plug ins for various SDRs.  That is a shame because my experience with DRM30 reception has been pretty good.  I have used a WinRadio G303i with DRM plug in, which set me back $40.00 for the license key (hint for those nice folks at the DRM consortium; licensing fees tend quash widespread interest and adoption).

CFRX, Toronto coverage map, average HF propagation conditions
CFRX, Toronto coverage map, average HF propagation conditions

Finally, I have advocated before and still advocate for some type of domestic shortwave service.  Right now, I am listening to CFRX Toronto on 6070 KHz.  That station has a transmitter power output of 1 KW into a 117 degree tower (approximately 50 feet tall) using a modified Armstrong X1000B AM transmitter netting  a 15-32 µV received signal strength some 300 miles away.  That is a listenable signal, especially if there is no other source of information available.  The average approximate coverage area for that station is 280,000 square miles (725,000 square kilometers). That is a fairly low overhead operation for a fairly large coverage area.  Perhaps existing licensed shortwave broadcasters should be allowed to operate such facilities in a domestic service.

The point is, before we pull the plug on the last shortwave transmitter, we should carefully consider what we are giving up.