The Broadcast Electronics STX-5 transmitter

Another install, this time a new BE product. I am familiar with the BE FM “C” series transmitter. Those are pretty solid units and we take care of many of them.

BE STX-5 LP transmitter
BE STX-5 LP transmitter

This new version of transmitter looks like it has a little bit of Elenos in its DNA.  Perhaps I am wrong about that.

The STXe exciter is an all purpose analog/digital unit that will do standard FM stereo, hybrid FM +HD radio, HD radio only, DRM+, or FM and DRM+.  I like that.  It gives the owner lots of options with regards to future planning.  Frankly, I would love to see some DRM+ testing done in the US.

We have actually installed a couple of “C” series transmitter with the STXe exciter as well.

BE FM2C with STXe exciter

The rest of the transmitter consists of four RF amps and an output combiner all in a short rack.  Frankly, if I were ordering one of these units, I’d order the taller rack.  Not that I am getting old or anything like that, but stooping over to program the date/time, frequency and power output introduced a slight discomfort in my lower back.

BE STX-5 LP controller/exciter
BE STX-5 LP controller/exciter

Running into the antenna.  At 4.1 KW, 18 watts reflected power is slightly high.  This antenna has always had a little bit of reflected power.

"The chicken coop, " WHUC and WZCR transmitter building
“The chicken coop,” WHUC and WZCR transmitter building

The building I installed this in is nick named “The Chicken Coop,” likely because it used to be an actual chicken coop.  I am not kidding.  The site was originally just the AM station (WHUC).  That station had a different transmitter building located some distance away which was fed with open transmission line.  This building was put in place sometime around 1969 when the FM station signed on as WHUC-FM (now WZCR).  It has seen better days, but we are working on fixing some of the issues with air conditioning and cleanliness.

Remains of open wire transmission line left over from orginal 1947 installation
Remains of open wire transmission line left over from original 1947 installation

The transmitter fired up without any issues and sounds much, much better than the QEI which it replaced.

Tired old QEI transmitter
Tired old QEI transmitter

The QEI transmitter had problems over the years, mostly burned out resistors in the RF combiner network.  It has since been scrapped.

Another FAX 5 install

At the risk of becoming redundant, here are a few pictures of a GatesAir FAX-5 install recently completed in Westerly, RI.  This was installed in a recently vacated Verizon cell site next to the old transmitter building.  The old transmitter building and the equipment contained therein had seen better days, to be sure.

UPDATE:

As requested, the only pre-installation photo I can find:

Some Verizon equipment still in place
Some Verizon equipment still in place

That photo was taken back in October 2018, when we first looked at the Verizon shelter as a viable alternative to the current transmitter site.

FAX-5 transmitter with fancy logo, placed in position
Transmitter in place, AC mains and RF connections made
Ground strap installation
Test mode, clamp on AC current meter, measuring amps per leg at full power
FAX-5 transmitter and equipment rack, on the air
Transmission line, supported by unistrut
Delta coax switch and Electro impulse dummy load, salvaged from old installation
FAX-5 running into antenna for the first time

Overall, the transmitter sounds great.  Much better than the old unit which had an AM noise problem.

If it wasn’t so far away, this would have been a pretty easy project.  There were minor miscues along the way that added up.  I will say that I learned a few good life lessons about the reliability and responsibility of people.

Box One

I have been remiss in updating this thing, even for Christmas and the New Year.  It has been a busy time, but also, it seems that there is nothing exciting to write about.  Continuing on writing about another transmitter installation or studio project seems redundant.

That being said, I have moved into the realm of high quality audio.  I miss that days when a good audio was the general rule, in both home audio and broadcast.  People have become used to crappy .mp3s played through crappy computer speakers or cheap ear buds.

Knowing just enough to be dangerous, I figured I should do a little bit of research before spending a lot of money foolishly.  I discovered that there are gobs and gobs of information on various forums and other places around the intertubes.  Most of it seems to be good, although one has to be careful and backup whatever is out there with science.  There are several books about DIY speaker building, amplifier construction, turntable maintenance, etc.  Picking the thing that I thought would be easiest and lead to the  biggest improvement in my own audio system, I set out to build a pair of speakers.

Most people probably don’t realize this, but there is quite a bit of work that goes into a well designed pair of speakers.  I began by thinking about what the end use will be, which eventually is a single ended tube amp based on a KT88 design.  As such, I figured the efficiency of the drivers was an important detail.  Power handling capability of the driver could be quite low, 30-50 watts or so.  Searching through several speaker manufacture’s web sites, I found a small sized, full range driver that is fairly efficient and has excellent reviews.

The Tang Band W4-1337SDF has a published sensitivity of 89dB/1 watt/1 meter.  Its frequency response is 70-20,000 Hz.  It also has a titanium speaker cone.  There have been many an article written and much ink spilled on metal cone speakers, so I did not quite know what to think of the titanium cone.  I did spend a goodly amount of time reading all of the reviews on this particular driver and decided to take the risk and buy two of them.

Next step was to calculate the proper interior volume of the speaker enclosure for a vented box.  Vented or ported speaker enclosures are generally more efficient than sealed units.  Vented boxes are a little bit more exacting to build correctly.  Again, lots of information available on line, some of it is good.  In the end, I downloaded a free software package called WinISD.

WinISD takes into account all of the Thiele/Small characteristics of the driver and generates  a basic box design.  I looked at the proposed box and decided that the internal volume was the important part, the actual shape of the box is secondary so long as it is not an exact cube.  Instead of the 2:3 ratio rectangle, I choose something different; a 1:4 rectangle.

Making cuts for speaker boxes
Making cuts for speaker boxes

Next, I began looking around at available materials.  I have plenty of wood laying around from previous projects, so I decided to make the boxes from 1×6 clear pine.  This is also contrary to conventional wisdom, as MDF is the preferred choice in speaker cabinets.  This is because natural wood has a resonate frequency, which can create problems.  As these are low power units, I figured, if it was a huge problem I could always make another cabinet out of MDF.  In the mean time, the wood, glue, paint, screws, foam insulation, tung oil finish where already in the shop.  Why buy more stuff?

I also wanted to add a tweeter (Peerless D19TD-05) to cover the high end and a simple 1 pole (or first order) cross over.

Speaker box work
Speaker box work

Thus, parts ordered, I started working on the boxes.  I decided that rabbit joints where a better choice than mitered 45 degree joints.  I used the router table to make the joints, cutouts and round the cabinet edges.  During the sanding process, I discovered that the wood boxes do indeed resonate somewhere around the 300 to 400 Hz region.  More on that later.

Speaker box glue up
Speaker box glue up

The fronts and backs are made out of 1/2 inch plywood, painted flat black.  There is a one inch rear firing port.  The box itself is larger than what is called for.  I made it thus because there where a couple of different recommendations on box volume and I wanted to add some cross bracing, which takes up space.

Speaker box, foam dampening and bracing
Speaker box, foam dampening and bracing

I thought about ways to dampen the wood box resonance and came up with a bit of rigid foam insulation, again left over from some long ago renovation project.  My idea was to take up some of that excess internal volume, but they might also work to dampen the resonance.  I cut several pieces of this material so that they fit snugly into the box.  I then used the sander to resonate the box and see what effect the foam insulation was having.  In the end, I came up one piece at the top and bottom and one approximately in the middle.  Once I was happy, these were glued in place.  This significantly dampened the resonance.  I also added quite a bit of acoustical foam inside the box.

First order crossover
First order crossover

The cross over is designed for 4000 Hz.  It consists of a 5 uF capacitor and a .31 uH inductor.  I am a minimalist at heart.  I thought about nixing the inductor altogether, but I think running both the driver and tweeter at the same time would lower the impedance too much over the high frequencies.

Completed speakers
Completed speakers

The completed project was bench tested using a software program called DATS:

Speaker impedance sweep
Speaker impedance sweep

The Tang Band driver is resonant at 60 Hz or so.  After the F3 frequency, calculated to be 101 Hz, the impedance looks good all the way out to 20 KHz.  It appears the F3 frequency is slightly higher, likely because the port is too short.

I messed around with the internal box volume by adding and taking away pieces of foam insulation.  In the end, I found that the original volume calculated by WinISD worked (and sounded) the best.

I set these up and took a listen.  Using a reference recording of Tschaikovsky (piano concert #1, B flat minor) I found these speakers sound excellent.  The stringed instruments and horns in particular sound very detailed.  The piano is open and natural.  If I close my eyes, it sounds like it is right in front of me.  Perhaps that is the wood box.  I tried them on several different types of music; jazz, rock and even Tom’s Dinner.  It may be a bit biased, however, I find these speakers to be far and above anything else I have owned in the past.  They sound great.

My only very minor gripe is the bass is not as responsive as I would like.  The low end starts around 90 Hz.  This showed up in the F3 frequency reported by WinISD.  I have a Polk Audio subwoofer that I am using (temporarily) to add the bass back into the mix.  I could also try tuning the ports a little bit to move the F3 down.  That may also require removing some if the foam from the box to increase the internal volume.

I also made a small mistake when cutting the wood for the box, as they are slightly too narrow and the driver does not fully fit onto the plywood front.  That is because I started working on this before I had the drivers in hand.  If I make another pair, I’ll make the cabinet a little bit wider.

Speaker frequency room response
Speaker frequency room response

I also ran a couple of sweeps with Room EQ Wizard.  That 300-400 Hz box resonance shows up in the sweep, but it is not noticeable when listening.  Without the subwoofer turned on, the bass does not start to pick up until about 70 Hz or so, which exactly the spec on the driver.  Funny how that works.

Speaker and subwoofer
Speaker and subwoofer frequency response

This is with the subwoofer turned on. Notice the little hum around 40 Hz, that is the hallway to the bathroom acting as a bass resonator.  Unfortunately, my listening room has some uncurable defects; I cannot get rid of the hallway to the bathroom because eventually that room comes in handy.  I need to get some acoustical material up on the wall and perhaps the ceiling.  I was thinking of a Helmholtz resonator in the wall.

Speakers mounted
Speakers mounted

They sound slightly better if they are moved off axis from the back wall.

My total cost was about $180.00, not counting the materials I already had on hand.  After listening to these for several days, I can say they stack up well against speakers that cost ten times what I paid.

Next project; the matching subwoofer.  I have some ideas…

Another small market build out

Finishing up another studio build out in an unrated market. There are some engineers who think that small market work is beneath them. That is fine with me, I enjoy it.  Once again, creating a nice, functional, modern facility while not breaking the bank poses some challenges.   I like to take sort of a minimalist simple approach while not compromising good engineering practice.  Another challenge is rebuilding an existing facility.  Each studio needed to be demoed one at a time with the stations playing hop scotch from studio to studio around the work.  There were four studios total plus the rack room.  There were also several other renovations going on at the same time as this project.

Looking at the overall facility, the client decided that one studio would be the main room where multiple guests could be seated, etc.  The other rooms would have guest microphones, but they are smaller rooms and limited to one guest each.  The smaller rooms have AudioArts Air4 consoles while the main studio has an R-55e.

WZOZ console, main studio, Oneonta, N
WZOZ console, main studio (Studio A), Oneonta, NY

The main studio had existing studio furniture that was in reasonable shape so we decided to reuse it.  While we had the studio ripped apart, the paint and carpet where updated.  The main microphone is an Electrovoice RE-20, the guest mics are Heil PR-20UT which are inexpensive and have excellent characteristics for a dynamic microphone.  Since this faces a fairly busy street, I put in some very basic DBX 286S mic processors with a little bit of downward expansion.  Adobe Audition is used for production.  I have also used Audacity which is available in both Windows and Linux flavors.  Acoustical wall treatments are coming soon.

Main studio, Oneonta, NY
Main studio, Oneonta, NY

The counter tops in the smaller studios were traded out with a local kitchen supply company.  We used Middle Atlantic BRK-12-22 racks with castors on them to install a limited amount of rack equipment.  Each one of these studios is nearly identical; a AudioArts Air4 console with JBL powered monitors.  The microphones in these studios are Heil PR-20UT with console supplied mic preamps.  These studios are used for WSRK, WDOS, WBKT and WKXZ.  All studios are off line when in automation, which means each can be used for production and other purposes.

Studios B-E, Oneonta NY
Studios B, Oneonta NY
Studio C, (WDOS) Oneonta, NY
Studio C, (WDOS) Oneonta, NY
Studio D, (WSRK) Oneonta, NY
Studio D, (WSRK) Oneonta, NY.

We started the TOC from scratch. This area was occupied by a bunch of empty file cabinets previously. The original equipment racks where in Studio A.

A riser was installed from the racks straight up to the roof for the STL, monitor antenna and satellite dish transmission lines.  Everything is grounded with a star grounding system connected to the main building ground which consists of driven ground rods and the water main.  The STLs have Polyphaser IS-PT50HN lightning protection devices installed.

900 MHz lightning protectors on STL transmission lines
900 MHz lightning protectors on STL transmission lines

The racks are Middle Atlantic MRK 4031.  Since this building was built sometime in the mid 1800’s, the floors are a bit uneven (along with almost everything else), so a fair amount of shimming and leveling was needed to get these units bolted together.

Racks and equipment
Racks and equipment

Each rack has its own UPS in the bottom and they are all on separate breakers.

A manual transfer switch controls a dedicated electrical sub panel.  All of the racks and studios are powered from this sub panel.  Below the transfer switch is a NEMA L14-30 twist lock male receptacle for generator connections.

Studio/TOC sub panel and transfer switch
Studio/TOC sub panel and transfer switch

The total load about 18 amps.  The station is looking to trade out some generators for various transmitter sites.  I suggested that they get a couple of the portable Honda inverter generators, which are very good have excellent power regulation, frequency stabilization and fuel economy.

The existing Scott’s Studio 32 system was updated with new computers.  This is an interim step until a new automation system can be installed next year.  Each station has it’s own BT 8.2ss switcher which can select any studio to go on the air with.  That flexibility makes moving from studio to studio easy.  It also allows for all the stations to be simulcast, which is handy in the event of an emergency.

Punch blocks are mounted on plywood attached to the back wall.  We left extra space for a new phone system.

The EAS monitor assignments are met with roof top yagi antennas.  I like drawings and diagrams, as the saying goes, a picture is worth a thousand words.  This is an image I created on Google Maps using the transmitter site coordinates for each of the EAS monitoring assignments.  That gives me good local aiming points for the various antennas needed.

EAS monitor assignment headings
EAS monitor assignment headings

Other drawings include a floor plan and block diagrams for each station.  I have a Viso template that I use for these.  I find that having these diagrams on hand in a book is very helpful in the event that somebody else needs to go to this station to work on things.

Block diagram for WDOS, Oneonta, NY
Block diagram for WDOS, Oneonta, NY

Finally, the wiring documentation which shows where each wire originates and terminates. Again, if I am not available and somebody else needs to do work here, this is very helpful. All the studios are laid out the same, so figure out one and then the rest falls into place.

Screen shot of wire run spreadsheet
Screen shot of wire run spreadsheet

There is still a little bit of clean up left and some old equipment to get rid of.  Otherwise, it’s a wrap.