October 2018
M T W T F S S
« Sep    
1234567
891011121314
15161718192021
22232425262728
293031  

Archives

Categories

Another small market build out

Finishing up another studio build out in an unrated market. There are some engineers who think that small market work is beneath them. That is fine with me, I enjoy it.  Once again, creating a nice, functional, modern facility while not breaking the bank poses some challenges.   I like to take sort of a minimalist simple approach while not compromising good engineering practice.  Another challenge is rebuilding an existing facility.  Each studio needed to be demoed one at a time with the stations playing hop scotch from studio to studio around the work.  There were four studios total plus the rack room.  There were also several other renovations going on at the same time as this project.

Looking at the overall facility, the client decided that one studio would be the main room where multiple guests could be seated, etc.  The other rooms would have guest microphones, but they are smaller rooms and limited to one guest each.  The smaller rooms have AudioArts Air4 consoles while the main studio has an R-55e.

WZOZ console, main studio, Oneonta, N

WZOZ console, main studio (Studio A), Oneonta, NY

The main studio had existing studio furniture that was in reasonable shape so we decided to reuse it.  While we had the studio ripped apart, the paint and carpet where updated.  The main microphone is an Electrovoice RE-20, the guest mics are Heil PR-20UT which are inexpensive and have excellent characteristics for a dynamic microphone.  Since this faces a fairly busy street, I put in some very basic DBX 286S mic processors with a little bit of downward expansion.  Adobe Audition is used for production.  I have also used Audacity which is available in both Windows and Linux flavors.  Acoustical wall treatments are coming soon.

Main studio, Oneonta, NY

Main studio, Oneonta, NY

The counter tops in the smaller studios were traded out with a local kitchen supply company.  We used Middle Atlantic BRK-12-22 racks with castors on them to install a limited amount of rack equipment.  Each one of these studios is nearly identical; a AudioArts Air4 console with JBL powered monitors.  The microphones in these studios are Heil PR-20UT with console supplied mic preamps.  These studios are used for WSRK, WDOS, WBKT and WKXZ.  All studios are off line when in automation, which means each can be used for production and other purposes.

Studios B-E, Oneonta NY

Studios B, Oneonta NY

Studio C, (WDOS) Oneonta, NY

Studio C, (WDOS) Oneonta, NY

Studio D, (WSRK) Oneonta, NY

Studio D, (WSRK) Oneonta, NY.

We started the TOC from scratch. This area was occupied by a bunch of empty file cabinets previously. The original equipment racks where in Studio A.

A riser was installed from the racks straight up to the roof for the STL, monitor antenna and satellite dish transmission lines.  Everything is grounded with a star grounding system connected to the main building ground which consists of driven ground rods and the water main.  The STLs have Polyphaser IS-PT50HN lightning protection devices installed.

900 MHz lightning protectors on STL transmission lines

900 MHz lightning protectors on STL transmission lines

The racks are Middle Atlantic MRK 4031.  Since this building was built sometime in the mid 1800’s, the floors are a bit uneven (along with almost everything else), so a fair amount of shimming and leveling was needed to get these units bolted together.

Racks and equipment

Racks and equipment

Each rack has its own UPS in the bottom and they are all on separate breakers.

A manual transfer switch controls a dedicated electrical sub panel.  All of the racks and studios are powered from this sub panel.  Below the transfer switch is a NEMA L14-30 twist lock male receptacle for generator connections.

Studio/TOC sub panel and transfer switch

Studio/TOC sub panel and transfer switch

The total load about 18 amps.  The station is looking to trade out some generators for various transmitter sites.  I suggested that they get a couple of the portable Honda inverter generators, which are very good have excellent power regulation, frequency stabilization and fuel economy.

The existing Scott’s Studio 32 system was updated with new computers.  This is an interim step until a new automation system can be installed next year.  Each station has it’s own BT 8.2ss switcher which can select any studio to go on the air with.  That flexibility makes moving from studio to studio easy.  It also allows for all the stations to be simulcast, which is handy in the event of an emergency.

Punch blocks are mounted on plywood attached to the back wall.  We left extra space for a new phone system.

The EAS monitor assignments are met with roof top yagi antennas.  I like drawings and diagrams, as the saying goes, a picture is worth a thousand words.  This is an image I created on Google Maps using the transmitter site coordinates for each of the EAS monitoring assignments.  That gives me good local aiming points for the various antennas needed.

EAS monitor assignment headings

EAS monitor assignment headings

Other drawings include a floor plan and block diagrams for each station.  I have a Viso template that I use for these.  I find that having these diagrams on hand in a book is very helpful in the event that somebody else needs to go to this station to work on things.

Block diagram for WDOS, Oneonta, NY

Block diagram for WDOS, Oneonta, NY

Finally, the wiring documentation which shows where each wire originates and terminates. Again, if I am not available and somebody else needs to do work here, this is very helpful. All the studios are laid out the same, so figure out one and then the rest falls into place.

Screen shot of wire run spreadsheet

Screen shot of wire run spreadsheet

There is still a little bit of clean up left and some old equipment to get rid of.  Otherwise, it’s a wrap.

I almost hate to say anything, but

We have this certain transmitter which has been on the same tube since June 6, 2001.  Come to think of it, the transmitter itself has been on the air for the same amount of time without failure.  A testament to its designer…

Broadcast Electronics FM20T, WYJB, Albany, New York

Broadcast Electronics FM20T, WYJB, Albany, New York

According to my calculations, that is 151,691 hours or 17 years 3 months and 22 days.  The tube is the original EMIAC 4CX15000A that came with the transmitter.

I am a little nervous about turning it off to clean the cabinet.

EIMAC 4CX15000A tetrode

EIMAC 4CX15000A tetrode

We have a spare on the shelf for the eventual replacement of this tube, but I really want to see how long this thing will last.  This is also one of the last tube transmitters we have in main service.  There are several backup tube transmitters still around.

Working with rigid transmission line

Installing transmitters requires a multitude of skills; understanding the electrical code, basic wiring, RF theory and even aesthetics play some part in a good installation.  Working with rigid transmission line is a bit like working with plumbing (and is often called that). Rigid transmission line is often used within the transmitter plant to connect to a four port coax switch, test load, backup transmitter and so on.  Sometimes it is used outside to go up the tower to the antenna, however, such use has been mostly supplanted by Heliax type flexible coax.

We completed  a moderate upgrade to a station in Albany; installing a coax switch, test load and backup transmitter.  I thought it would be interesting to document the rigid line work required to complete this installation.  The TPO at this installation is about 5.5 KW including the HD carriers.  The backup transmitter is a Nautel VS-1, analog only.

This site uses 1 5/8 inch transmission line.  That line is good for most installation up to about 10-15 Kilowatts TPO.  Beyond that, 3 inch line should be used for TPO’s up to about 30 Kilowatts or so.  Even though the transmission lines themselves are rated to handle much more power, often times reflected power will create nodes along the line where the forward power and reflected power are in phase.  This can create hot spots and if the reflected power gets high enough, flash overs.

Milwaukee portable band saw

Milwaukee portable band saw

Working with rigid line requires a little bit of patience, careful measurements and some special tools.  Since the line itself is expensive and the transmission line lengthener has yet to be invented, I tend to use the “measure twice and cut once” methodology.   For cutting, I have this nice portable band saw and table.  This particular tool has saved me hours if not days of work at various sites.  I have used it to cut not just coaxial line and cables, but unistrut, threaded rod, copper pipe, coolant line, conduit, wire trays, etc.  If you are doing any type of metal work that involves cutting, this tool is highly recommended.

Milwaukee 6230N Band Saw with cutting table

Milwaukee 6230N Band Saw with cutting table

Next point is how long to cut the line pieces and still accommodate field flanges and inter-bay line anchors (AKA bullets)?  The inner conductor is always going to be sorter than the outer conductor by some amount.   Below is a chart with the dimensions of various types of rigid coaxial cables.

Length cut chart for various sizes of rigid coaxial cables

When working with 1 5/8 inch rigid coax, for example, the outer conductor is cut 0.187 inches (0.47 cm) shorter than measured distance to accommodate the field flange. The inner conductor is cut 0.438 inches (1.11 cm) shorter (dimension “D” in the above diagram) than the outer conductor to accommodate the inter bay anchors. These are per side, so the inner conductor will actually be 0.876 inches (2.22 cm) shorter than the outer conductor.  Incidentally, I find it is easier to work in metric as it is much easier to measure out 2.22 CM than to try and convert 0.876 inches to some fraction commonly found on a tape measure.  For this reason, I always have a metric ruler in my tool kit.

Altronic air cooled 20 KW test load

1 5/8 inch rigid coax run to Altronic air cooled 20 KW test load

1 5/8 inch rigid coax and 4 port coax switch mounted in top of Middle Atlantic Rack

1 5/8 inch rigid coax and 4 port coax switch mounted in top of Middle Atlantic Rack

The next step is de-burring.  This is really critical at high power levels.  I use a copper de-burring tool commonly used by plumbers and electricians.  One could also use a round or rat tail file to de-bur.  The grace of clamp on field flanges is they have some small amount of play in how far onto the rigid line they are clamped.  This can be used to offset any small measurement errors and make the installation look good.

Happy New Year!

After a bit of reflection and a few good conversations over the New Year’s Holiday, I decided that I should continue my work on this blog.  I would like to thank all those that have stuck by and waited.  I have received numerous emails and messages off line, all of which have been read and appreciated.

Since the abrupt stoppage last July, which was absolutely necessary for me, many things have happened within the business.  Fortunately, during the hiatus, I was still taking pictures.  After sorting through them, here are a few interesting things that happened:

At one of our client’s AM transmitter sites in Albany, NY a 2.6 Million Watt solar system has been installed.

WROW-AM Steel mounting poles on antenna array field

WROW-AM Steel mounting poles on antenna array field

This project required many steel mounting posts be driven into the ground around the AM towers.  I don’t even know how many, but I would hazard a guess of over three hundred.  Each one of those mounting posts was hand dug down a depth of 6-10 inches to look for ground wires.  Where ever a ground wire was found, it was moved out of the way before the post was set.

WROW-AM ground wire moved out of way

WROW-AM ground wire moved out of way

Basically the solar array covers about 1/2 of the antenna array field.  All of the steel mounting hardware is tied into the ground system, making, what I am sure is a pretty large above ground counterpoise.

WROW-AM solar panel mounting hardware

WROW-AM solar panel mounting hardware

View from the south looking north:

Solar Array installed on WROW antenna array, Glenmont, NY

Solar Array installed on WROW antenna array, Glenmont, NY

View from the north, outside of the transmitter building, looking south:

Solar Array installed on WROW antenna array, Glenmont, NY

Power company interface and disconnect:

Solar Array utility company disconnect, Glenmont, NY

Solar Array utility company disconnect, Glenmont, NY

The utility company had to upgrade the transmission lines to the nearest substation to handle the additional power produced by the solar system. All in all, it was a fun project to watch happen.

At a certain studio building, which is over 150 years old, the roof needed to be replaced.  This required that the 3.2 meter satellite dish and non-penetrating roof mount be moved out of the way while that section of the roof was worked on.

3.2 meter satellite dish

Dish ready to move, all of the concrete ballast removed and taken down from roof.  The roofing contractors constructed a  caddy and the entire dish and mount was slid forward onto the area in front of it.  Since the front part of the roof was not reinforced to hold up the satellite dish, we did not reballast the mount and the XDS receivers ran off of the streaming audio for a couple of days until the dish was put back in its original position.

3.2 meter satellite dish ready to move

3.2 meter satellite dish ready to move

A couple of other studio projects have been underway in various places.  Pictures to follow…

One of our clients sold their radio stations to another one of our clients.

There has also been a bankruptcy of a major radio company here in the good ol’ US of A.  Something that was not unexpected, however, the ramifications of which are still being decided on in various board rooms.  One of the issues as contractors is whether or not we will get paid for our work.  All things considered, it could be much worse.

Learned a valuable lesson about mice chewed wires on generator battery chargers.  I noticed that the battery charger seemed to be dead, therefore, I reached down to make sure the AC plug was in all the way.  A loud pop and flash followed and this was the result:

Arc burns, right hand

Arc burns, right hand

My hand felt a bit warm for a while.  The fourth digit suffered some minor burns.  There is at least one guy I know that would be threatening a lawsuit right now.  Me, not so much…  All of the high voltage stuff we work on; power supplies that can go to 25 KV, and a simple 120 VAC plug is the thing that gets me.

The return of the rotary phase maker.

Rotary phase maker, Kay Industies T-10000-A

Mechanically derived 3rd phase used when the old tube type transmitter cannot be converted to single phase service.

Those are just a few of the things I have been working on.  I will generate some posts on current projects underway.  Those projects include a 2 KW FM transmitter installation, another studio project, repair work on a Harris Z16HD transmitter, etc

It is good to be back!

Uhm, eh-hem. Is this thing on?

Just checking…

The GatesAir FLX-40 transmitter

The GatesAir FLX-40 transmitter is my first liquid cooled transmitter installation.  Previously, I have installed an air cooled Nautel NV-40, a V-40 and a couple of BE FM-35T/20T units.  The WEBE transmitter site in Bridgeport, Connecticut is an interesting facility.

Smoke Stack, Bridgeport Energy, Bridgeport, CT

Smoke Stack, Bridgeport Energy, Bridgeport, CT

This coal fired power plant smoke stack which currently holds up the six bay, half wave spaced Shively antenna.  The old BE FM35A transmitters are getting little bit long in the tooth.  Thus, we picked one to scrap, the other will be kept for backup service.

Scraping 34 year old BE FM30A transmitter

We saved a whole bunch of parts to keep the other FM35A on the air in backup service.

BE FM30A power supply cabinet

The power supply cabinet with that 500 pound plate transformer was the last to go.

On second thought, that plate supply transformer is a good spare to have

On second thought, that plate supply transformer is a good spare to have

The FLX-40 came on a large truck.  Fortunately, we were able to open the side gate at the power plant and get the truck to the front door of the transmitter building easily.  The transmitter consists of two large cabinets, each with two 10 kilowatt power blocks.  There is also a pump station and an outdoor heat exchanger.

FLX-40 cabinet two off the truck

FLX-40 cabinet two off the truck

FLX-40 cabinet one

FLX-40 cabinet one

FLX-40 in place, cabinets bolted together

FLX-40 in place, cabinets bolted together

This transmitter design is based on the Harris digital TV transmitters.

FLX-40 pump station

FLX-40 pump station

The pump station and heat exchanger are the same systems used for TV transmitters.  Liquid cooled units require a bit more planning on the installation end.  The coolant piping should have a high spot from which everything else slopes down hill.

Send and return coolant lines

Send and return coolant lines

I put a 1/4 to 12 inch pitch on everything.  Of course, there are several low points, the heat exchanger, pump station and bottom power blocks.

Holding steady at 18 PSI for 24 hours

Holding steady at 16 PSI for 24 hours

After assembling the cooling system, we pressure tested it for 24 hours.

Installation debris in the coolant line strainer

Installation debris in the coolant line strainer

Following that, we flushed the system with distilled water for several hours before we filled it with 40/60 glycol/water mix. Record low temperature in Bridgeport is -7 F (-22 C), thus a 40/60 mix will give protection down to -15 F (-26 C). The more water in the coolant, the better heat transfer capacity it has.

At the highest point in the system, there is a sight glass and an air purge valve

At the highest point in the system, there is a sight glass and an air purge valve

The pump station is controlled by the transmitter, which speeds up the pumps according to how much heat needs to be moved. In turn, the pump station control the fan speed on the heat exchanger outside.

FLX-40 pump station on line

FLX-40 pump station on line

The pump station runs with one motor most of the time. The other pump motor will run in the event of failure or if there is not enough flow through the power blocks. Each of the four power blocks has a flow rate meter on the return line.

Heat Exchanger Fan motor controllers, Variable Frequency Drive modules

Heat Exchanger Fan motor controllers, Variable Frequency Drive modules

Variable Frequency Drive (VFD) fan motor controllers show them running at half speed.

50 KW heat exhanger

50 KW heat exhanger

GatesAir 50 KW heat exchanger mounted on concrete pad behind the building. Air flows out from the motor side.

One of several shipping containers with modules and other parts for the FLX-40

One of several shipping containers with modules and other parts for the FLX-40

As with most things, some assembly required.  The RF modules needed to be placed in the power blocks according to their serial numbers on the test data sheet.  This insures that the information on the test data sheet matches the installed transmitter configuration.  The power combiner between the two cabinets as well as the reject load and directional coupler all need to be installed.

RF modules with large aluminium heat spreaders.   Coolant flows through each module.

FLX-40 power amp module

FLX-40 power amp module

WEBE, Bridgeport, CT GatesAir FLX-40 on the air for the first time

WEBE, Bridgeport, CT GatesAir FLX-40 on the air for the first time

On the air!

FLX-40 into the antenna

FLX-40 into the antenna

We ran the transmitter for several hours into the antenna yesterday afternoon. The coolant system is still purging air, so we periodically needed to add water/antifreeze to the pump station to keep the pressure between 12-18 PSI. Eventually, the TPO will be 34 KW with the HD carrier(s).

All in all, I would say that this was a fun project. The liquid cooled transmitter had a few extra steps during the installation process, but not too difficult.

Studio Buildout, Part III

I have been so busy that I forgot to post the pictures of the completed studio build out.  Overall, I would say that I am pretty pleased with the end result.  Of course, this is not Manhattan but rather an unrated market in central New York, and the budget reflected that.  Overall, the radio stations are in much better technical condition than before.  They are now located in the center of their community within walking distance of the town hall, other civic locations and activities.

There are five radio stations broadcasting from this new studio space.  Two stations are simulcast using the Westwood One Classic hits format from the satellite.  The only AM station is a Fox Sports Radio affiliate from the satellite with a local morning show.  Another one is a “we play anything” computer juke box and final station has a country format with quite a bit of local content.  Any station can go on the air from either studio.  In addition, all stations can simulcast the mother ship from Oneonta, which comes down via a Barix Exstreamer 1000.

Walton TOC

The Technical Operation Center consists of four racks containing the Ethernet routers, switches, a patch panel, automation systems, audio routing switchers, air monitor receivers, audio distribution amps, Barix units, Wheatstone Blade IP 88A STL, etc.  The equipment racks came from a disused site in New Jersey.

The satellite dish and receivers are located at the transmitter site, audio and closures come back via the Wheatstone Blade IP 88A.

Everything in this room is backed up by a STACO 2.5 KVA UPS.

TOC wire terminations

The wire termination from the studio are mounted to Krone LSA-PLUS blocks.  Studio trunk wiring consists of connectorized 25 pair CAT 5 cable.  There are also six runs of shielded CAT 5e cable for Ethernet and extended KVM from the TOC.

There is a manual transfer switch with a NEMA L14-30 input receptacle on the bottom.  A twenty for 10/4 SOJ cable will reach the ground from the window in the left hand side of the picture.  This is the standard NEMA plug/receptacle set for a moderate sized portable generator.  That feeds a 100 Amp sub panel which in turn feeds the racks and studio equipment.  Thus the entire facility can be run on a 5000 watt (good quality) portable generator in the event of a prolonged power outage.

The ground buss bar is connected to the main building ground at the service entrance.  All racks and studio consoles are grounded to this main ground point.

The air monitor receivers feed both studios.  There is also a provision to connect audio silence sensors up to each air monitor DA to notify the station staff in the event of an off air situation.  Believe it or not, this type of system has never been installed for these stations.

Studio A is the main studio.  The AudioArts Air4 console is a good fit for this type of operation.  These consoles have USB outputs, so the console can act as a sound card for the digital editing computer.  Each studio is equipped with an air monitor switch that can select any station to feed the external monitor input on the Air 4 console.  This allows the guy on duty to keep an eye on all the signals coming from the facility.

Studio A

The counter tops were custom made at a local kitchen place on trade. The microphone are Heil PR-22 with shock mounts, which are better than the Realistic mics in the old studio.  This is the first time that the main studio has had more than one microphone. The morning show guy has already pressed those guest mics into service with a few on air interviews.

The monitor speakers are JBL LSR305 mounted on home made speaker stands consisting of 18 inch black iron pipe and floor flanges.

Studio A

The small equipment rack is on casters and can roll out from under the studio furniture to get at the back of the equipment.  A used Gentner DH3 TELCO hybrid is used to get phone callers on the air.  Adobe Audition is used for editing and production on the left hand computer monitor.  That CPU is in the bottom of the roll around rack.

Studio A

The office chair and other furniture was also acquired on trade.

Studio A

What the operator sees. STORQ computer on the left for music, Scotts SS32 on the right for automation. Both are extended from the TOC. Unless the morning show guy is live on the air, the console is bypassed and the audio stays in the TOC.

It all works pretty well.

Studio B

Studio B is the same as Studio A except fewer microphones.

Studio B

Studio B operator view.  This studio can be used for one of the other stations or production.

Again, this is not a Fancy Nancy installation, but it does get the job done.

Hoth

Alternate title: Winter in the Northeast

For all you southerners and west coast people, we have been having an average winter here in the Northeast. While many of our transmitter sites are drive ups, we have several located at ski area mountain peaks.  Technically, those mountain top transmitter sites are a fantastic way to get the Height Above Average Terrain (HAAT) way up there.  Logistically, they are much more difficult to deal with.  Installing a new transmitter or even refueling a generator takes major effort.  Working in the cold and wind is much more fatiguing and requires paying special attention protective clothing, hydration, exposure, etc.

Here are a few pictures from Killington and Pico mountain ski areas in Vermont

Your ride is here.

Your ride is here.

The snow grooming machine is the only way to bring anything up to the top of the mountain during the winter time. In this case, I needed to replace a BW Broadcast TX 1500 watt transmitter.

Trail from ski lift to tower

Trail from ski lift to tower

Even with the snow grooming machine, the last few hundred yards needs to be walked. Fortunately, the snow is packed and not too deep here.

Tower on Pico Mountain

Tower on Pico Mountain

Tower is encrusted with ice. I can tell the tower climber is having a great day:

Tower climber working on ice encrusted towe

Tower climber working on ice encrusted tower

Riding the chair lift back down the mountain gets plenty of strange looks from those skiers coming up:

Pico chair lift

Pico chair lift

Over on Killington Peak, conditions are actually worse.

Killington Peak tower

Killington Peak tower

The ERI antenna heaters cannot keep up with the ice buildup.

ERI two bay antenna with ice.

ERI two bay antenna with ice.

The general manager insists that this winter is not too bad and everything should be working right. My statement to her: Based on my 27 years experience, your shit is fucked up. But if you know how to fix this, come on up and show me.  She deferred.

FM transmitter building and antenna

FM transmitter building and antenna

What the fire tower looked like last winter.

Killington peak fire tower

Killington peak fire tower

Train from the Gondola to the tower

Train from the Gondola to the tower

Прощаться!

This information is from an occasional reader who wished to remain anonymous.

Another AM station surrenders its license, this time from north of the border. CKSL, London, Ontario, Canada is gone for good.  Current owner, Bell Media, has determined that it would cost more to repair the deficiencies with the antenna system than economically feasible, especially considering it’s low ratings.  Here is their filing with the CRTC:

Bell Media is the licensee of CKSL-AM 1410, assuming stewardship of the station in 2013 as part of the Astral Media acquisition.

A technical review of the transmitter site was recently completed both by Bell Media and contractors, which has resulted in the determination that the AM array poses an unacceptable risk from a health and safety perspective.  The five towers are experiencing serious structural degradation and also require repairs to the aviation safety lighting system. In addition, the building which houses the transmitter has shifted off its foundation (as have several of the individual tower sheds).

Given these problems, Bell Media would need to make a significant financial investment to bring CKSL-AM’s transmitter up to compliance with Human Resources Development Canada, Industry Canada and NavCanada operational codes and standards, all of which is estimated to exceed $3 million dollars.

From a market perspective, CKSL-AM has consistently ranked last out of all ten commercial stations in the London market, both in audience share and revenue generation, over the last several years.  In fact, since 2013 the London market has seen radio revenues drop 4% and CKSL-AM generates the least amount of revenue of the stations in the market. Even with a significant investment in programming, this trend is unlikely to be reversed. 

In light of the significant capital costs coupled with the absence of revenue and audience share, Bell Media is respectfully requesting the revocation of the CKSL licence.

Well, 24/7 comedy will do that to you.  Somebody in the business said to me recently “The listeners are abandoning radio!”  No, it is the broadcast station owners who are abandoning their listeners and their cities of license.  I have a news flash for all current broadcast station owners; as surprising and radical as this might sound, bland, boring, canned, completely irrelevant, dismal, uninformative, unimaginative, unentertaining, dreary, stale, unenjoyable programming will drive away even the most loyal listeners.  People really want to listen to radio, it is an easy habit and readily accessible.  Radios are ubiquitous; they are in our kitchens, bedrooms, cars, hotel rooms, offices, restaurants, barber shops, etc.  That, however, may not always be the case, as more and more people move Spotify, Pandora, or Apple radio when they are tired of the disappointment.  I was listening to a certain sports radio format the other day and I kept waiting for something interesting to happen.  I waited and waited. I would say to myself; okay, this will be the segment when I will learn something or be entertained.  This upcoming guest will say something interesting.  Sadly, those expectations were never met and I will never tune into that station again. Elevator music would have been better.  Worse than sports radio, 24/7 comedy is the absolute death knell.  This is like saying; we are out of ideas and we do not care.

Here are a few pictures of the former CKSL-AM transmitter site:

CKSL antenna array

CKSL antenna array

CKSL_transmitter

CKSL transmitter building

CKSL_transmission

CKSL transmission line bridge

CKSL_tower

CKSL tower base

Actually does not look too bad, at least the field is mowed. I have seen much, much worse.  Those bolt together towers, though. I would bet that they are the real problem, bolts are deteriorating faster than the tower steel. Very likely all the towers need to be replaced and that is why the license is being surrendered.

If you are a radio geek, get out there and take some pictures of your favorite radio station.  If the current trends continue, eventually they will all be gone.

Came as a stock item

So, I wore out another car and it was time to get a new one. Unexpectedly, the new car came with one of these fancy gizmos:

HD Radio as a stock item

HD Radio as a stock item

This is not the first HD radio I have owned, the Jeep Cherokee had one that I install myself. This is the first time it came with the car and I didn’t even mention it to the sales guy.

A few observations:

  • Many stations’ HD1 channels don’t sound very good, they are either shrill and tinny, or not synced with their analog counterpart.
  • There still aren’t very many station transmitting HD Radio; FM stations are either NPR affiliates or belong to a few larger corporate owners.  The AM stations are few and far between.
  • AM HD Radio still has numerous problems in the mobile listening environment.
  • Many of the HD 2/3 don’t sound very good; low audio levels, muffled modulation, low bit rate audio, etc.  The only exception that I have found so far is Vermont Public Radio’s classical format, transmitted on the HD2 of WVPS, Burlington.
  • HD2/3 channels mainly serve as “translator loophole” stations, AKA “Metro Stations”

As far as the new ownership by DTS goes; I will reserve judgement until they do something with it.

Axiom


A pessimist sees the glass as half empty. An optimist sees the glass as half full. The engineer sees the glass as twice the size it needs to be.

Congress shall make no law respecting an establishment of religion, or prohibiting the free exercise thereof; or abridging the freedom of speech, or of the press; or the right of the people peaceably to assemble, and to petition the Government for a redress of grievances.
~1st amendment to the United States Constitution

Any society that would give up a little liberty to gain a little security will deserve neither and lose both.
~Benjamin Franklin

The individual has always had to struggle to keep from being overwhelmed by the tribe. To be your own man is hard business. If you try it, you will be lonely often, and sometimes frightened. But no price is too high to pay for the privilege of owning yourself.
~Rudyard Kipling

Everyone has the right to freedom of opinion and expression; this right includes the freedom to hold opinions without interference and to seek, receive and impart information and ideas through any media and regardless of frontiers
~Universal Declaration Of Human Rights, Article 19

...radio was discovered, and not invented, and that these frequencies and principles were always in existence long before man was aware of them. Therefore, no one owns them. They are there as free as sunlight, which is a higher frequency form of the same energy.
~Alan Weiner

Free counters!