Copper Thieves

If you are the type of person that drives around to transmitter sites and steals things; fuck you. You have no idea the problems you are causing to get a few extra dollars worth of scrap copper.

Missing copper ground buss bar
Missing copper ground buss bar

I have a feeling that most of these copper thefts can be attributed to out-of-town tower contractors removing old cellular equipment from towers.  Notice, only the buss bar and copper ground wire is missing.  They did not try to cut the transmission lines.  In other words, they seemed to know what they were doing.  I have noticed around here that when a particular contractor, employed by an unnamed large company that rhymes with glint, would work at a site, things would be missing afterward.

Perhaps it is just a coincidence. I have never been able to catch anyone pinching things. However, if this is you, and I catch you, you can rest assured that I will block you in with my car, then walk down the road and call the police.

The Voltair

I have put off writing anything about this for several reasons. First of all, there is a lot of secrecy surrounding the use of the Voltair magic machine. No one will admit to it, however, I have had several off-the-record conversations with various engineers.  All of this is hush-hush, unofficially off the record and on the QT, so no names, call letters, or cities of license can be disclosed.

The general gist of these conversations is this; the Voltair seems to be increasing ratings in some cases but not others.  It is sometimes too early to tell whether the increased ratings are a one-time anomaly or something more permanent.  In one case, an AC station saw 30% increase in numbers, while a certain talk station saw next to nothing.  Results are mixed.

In the credit where credit is due department; the Telos Marketing campaign has been effective.  Again, from a variety of different sources; Program Directors, Market Managers, and Sales Managers are “beside themselves,” or “giddy”  when the UPS truck delivers the Voltair to the front door.  In one case, requiring that “I (the market engineer) drop everything” to get it installed as quickly as possible and “acting like it is God’s gift to radio.”  It looks like all those trade publication ads are paying off, $15,000 at a time.

Voltair PPM encoder enhancing device, in the wild
Voltair PPM encoder enhancing device, in the wild

One interesting thing about the Voltair, you can program simulated listening environments such as sporting events, restaurants, kitchens, vehicles, etc.  This allows the user to see how their program material is being decoded by a PPM survey device in those types of environments.  For example, if you are a sports station, having your program material decode well at sporting events or restaurants and bars might be important.

Of course, we have all seen the confidence display:

Voltair PPM encoder enhancer "confidence display"
Voltair PPM encoder enhancer “confidence display”

So, what does this mean?  Perhaps there is an inherent flaw in the Nielsen PPM encoding technology.  In the past, PPM has been blamed for the demise of the Smooth Jazz format.  I always had the notion that Smooth Jazz was responsible for the demise of the Smooth Jazz format.  However, if PPM is indeed causing certain program material to disappear from the airwaves, then it would be a case of the tail wagging the dog.  If PPM requires that station owners purchase a $15,000 in order to get credit for their TSL and cume, then there is a pretty big problem with the technical aspects of the system.

Of course, there are others that say there is no “Voltair effect.”  The Voltair machine is simply a fancy and expensive gizmo that looks good but does not really do anything.

Nielson Audio is having a Webinar on July 21 to address some of the questions regarding the Voltair and PPM encoding for subscribers only.  It will be interesting to see what the outcome is.

Cost saving measures

Excerpt of a memo from a few years ago, during the great recession:

(Redacted) has implemented a consumables reduction program.  All consumables; copy paper, toner, note pads, pens, pencils, paper towels, garbage bags, paper plates, plastic flatware, toilet paper, and so forth must be reduced by 25%.  (Redacted) is spending far to much on such material which is impacting our financial performance.

The Management

My contribution to the effort:

new consumable reduction program
new consumable reduction program

I wouldn’t want the CEO to miss his bonus this year…

The Emergency FM Replacement Antenna

Hurricane season is here. This time of year makes me fondly remember hurricanes of the past and the things we had to do to get stations back on the air; walking a mile down a sandy spit of land, wading through swamp water to get to the transmitter shack, being threatened with arrest by the Connecticut National Guard, blow drying RF modules with a hair dryer, sleeping in a camper for a week…  Ahhhh, good times, great times!

The one thing that I did learn if the disaster is big enough, expect none of the normal services to be functioning.  That includes things like gas stations, fuel delivery, grocery stores, restaurants, hotels, UPS, roads, bridges, telephone service, internet service, etc.

It is not a far-fetched scenario for the main FM transmitter site to be out of commission and will not be available or accessible for some prolonged period of time.  There might also be mitigating circumstances such as catastrophic tower failure, destruction of the transmitter building, flooding, or other major infrastructure disruptions.  In those situations, calling the broadcast supply vendor of choice for a replacement might not be an option.

It has happened before…

All of these things got me thinking about how to fabricate a reliable FM broadcast antenna from simple materials available on hand.  The FCC allows for temporary operation with an emergency antenna in part 73.1680, which reads:

(a) An emergency antenna is one that is erected for temporary use after the authorized main and auxiliary antennas are damaged and cannot be used.

(b) Prior authority from the FCC is not required by licensees and permittees to erect and commence operations using an emergency antenna to restore program service to the public. However, an informal letter request to continue operation with the emergency antenna must be made within 24 hours to the FCC in Washington, DC, Attention: Audio Division (radio) or Video Division (television), Media Bureau, within 24 hours after commencement of its use. The request is to include a description of the damage to the authorized antenna, a description of the emergency antenna, and the station operating power with the emergency antenna.

(1) AM stations. AM stations may use a horizontal or vertical wire or a nondirectional vertical element of a directional antenna as an emergency antenna. AM stations using an emergency nondirectional antenna or a horizontal or vertical wire pursuant to this section, in lieu or authorized directional facilities, shall operate with power reduced to 25% or less of the nominal licensed power, or, a higher power, not exceeding licensed power, while insuring that the radiated filed strength does not exceed that authorized in any given azimuth for the corresponding hours of directional operation.

(2) FM, TV and Class A TV stations. FM, TV and Class A TV stations may erect any suitable radiator, or use operable sections of the authorized antenna(s) as an emergency antenna.

(c) The FCC may prescribe the output power, radiation limits, or other operating conditions when using an emergency antenna, and emergency antenna authorizations may be modified or terminated in the event harmful interference is caused to other stations or services by the use of an emergency antenna.

In this situation, making a circularly polarized antenna would be overly complicated, so either a horizontally or vertically polarized antenna would be the most likely scenario.  There are a few antenna types that readily lend themselves to field expedient fabrication.

These are, in no particular order:

Of these, the 1/2 wave wire dipole is the easiest to construct.  Cut two wires, length (in feet) determined by the formula 234/Frequency (Mhz).  Attach one wire to the center conductor and one to the shield, stretch to the wires out and tune for minimum SWR by cutting or adding small lengths to the ends.  The total length for such an antenna would be approximately five feet and it could be mounted horizontally or vertically.  The issue with a wire dipole would be bandwidth and power handling capability.

A 1/2 wave dipole made from tubing would have better bandwidth and power handling, but tubing is a little harder to work with when it comes to tuning the antenna.

Frankly, if one is going to go through the trouble of using tubing to create an emergency antenna, the J-Pole (end-fed antenna with a 1/4 wave matching section) is probably the best.  This antenna is easier to tune, does not need to work against a ground plane, and has good bandwidth and a low take-off angle, meaning more power is radiated out toward the horizon, giving it a good deal of gain over both a ground plane and dipole antenna.  Additionally, when using standard RG-8, RG-214, LMR-400 or another similar transmission line, a well-matched antenna might be able to accept about 1 KW of input power, which would net approximately 4.4 KW ERP.  Not an insignificant sum, especially in an emergency situation.

Vertical radiation pattern for J-pole (1/2 wave end fed) antenna
Vertical radiation pattern for J-pole (1/2 wave end fed) antenna
1/4 wave ground plane vertical radiation pattern
1/4 wave ground plane vertical radiation pattern

There are many J-Pole antenna calculators available online, but many of them include a 20-inch or so section of tubing below the tuning stub that can be electrically coupled to the supporting structure.  This configuration defeats the main advantage of the antenna, creating a good deal of upward radiation.  It is a better idea to use a non-conductive support piece and keep any conductive materials at least 1/2 wavelength or greater from the radiating portion of the antenna.

The basic j-pole antenna looks like this:

J Pole (1/2 wave vertical antenna) diagram
J Pole (1/2 wave vertical antenna) diagram

The radiating part of the antenna starts above the tuning stub.  Basically, the 1/4 wave stub is shorted at the bottom, the feed point is adjusted away from the shorted end until a 50-ohm impedance point is found.  The center conductor of the coax is attached to the 3/4 wavelength section, while the shield is connected to the stub. The critical distances are the tuning stub length and the distance of the feed point from the shorting section.  I created an excel spreadsheet (.xls) that can be used to create all the lengths required to fabricate one of these antennas.  That spreadsheet can be had here: J Pole Calculator

Having a few moments of time to spare, I thought it would be fun to build one of these and put the analyzer to it.  I think testing things in the real world is a good exercise and I always enjoy working with antennas anyway.  Looking in the basement, I found some 3/4 inch copper tubing, a tee, an elbow, and a few end caps.  The complete list of parts is thus:

PartAmountUse
¾ copper tubing78-96 inches (196-244 cm) (frequency dependent)Main section
¾ copper tubing26-32 inches (66-82 cm) (frequency dependent)Tuning stub
¾ copper tubing2.5-3 inches (6.35-7.62 cm) (frequency dependent)Tuning stub short
¾ copper tubing2 inches (5.08 cm)Mounting section, bottom of T to MIP threaded adaptor
¾ copper T section1 eachT section for joining main section to tuning stub
¾ copper 90 elbow1 eachElbow
¾ copper end cap2 eachEnd cap on tubing
¾ to 1 inch copper MIP threaded adaptor1 eachAntenna Mounting
1 inch PVC FPT threaded adaptor1 eachInsulating mounting connection
1 inch PVCApproximately 20-25 inches (50-65 cm)Insulating mounting material
1 inch stainless steel hose clamps2 eachAttaching the coax to the antenna feed point
RG-8, RG-214, LMR-400 or other transmission lineAs needed, including 5-6 turns, six inches in diameter to form RF choke at feed pointRF choke needed to keep RF off of coax shield

One important detail to remember when using the above spreadsheet, the measurements are to the closest side and not the center.  Thus, if something measures 2.5 inches, it is metal to metal.  Some basic soldering skills are required, but assembly is relatively straightforward.  In a pinch, almost any conductive material could be used including aluminum, brass, steel, EMT, rigid conduit, or even iron pipe.

Parts cut to size for j-pole antenna on 87.9 MHz
Parts cut to size for J-pole antenna on 87.9 MHz
j-pole antenna assembled
J-pole antenna assembled
J-pole antenna on the antenna testing range
J-pole antenna on the antenna testing range

I made this particular J-pole antenna on 87.9 MHz because I didn’t feel like chopping up all my 3/4-inch tubing.  Cutting and soldering the tubing took about half an hour.  Designing and fabricating the feed point system for another half an hour.  I’ll throw another hour in for rounding up the parts, tools, etc.  Thus, the entire antenna was constructed in about two hours.  I used my AIM 4170D to find the proper feed point.  If I were going to actually use this antenna, it would then be a matter of finding a mounting location and running the transmission line.

J-pole antenna analysis results
J-pole antenna analysis results

Actually, I was less than happy with this. While the antenna is nice and broad across several channels, there are 16 ohms of inductive reactance that is impossible to get rid of. That gives an SWR of 1.4:1, which is not great.  With that kind of load, I would be reluctant to run more than a couple of hundred watts into this antenna. The interesting thing is, that graph is the first one, with everything set as calculated in the spreadsheet.  After that, I could make the impedance and reactance worse, but not better.

Still, in a pinch, I would use this antenna until something better could be found.

Update:

As promised, a picture of the feed point:

J-pole feed point connections
J-pole feed point connections

The hose clamps are not optimum, I am sure a better way to attach the feed line to the antenna can be fabricated, but again, I was thinking of an emergency situation and the parts which may be available from local sources.