Pittsfield Massachusetts’ newest “Metro-Station” 103.3, W277CJ

We have been poking away at this one for the last year or so.  It seems that the previous owners of Berkshire Broadcasting had filed for a translator to rebroadcast WNMB, (100.1 WUPE-FM) North Adams in downtown Pittsfield, during the great translator rush of 2003.  When the CP showed up in the mail last March, the current owners were quite surprised.

After looking at the Construction Permit, we made some modifications;

  • Moved the transmitter location from 100 North Street to 1 West Street (Crowne Plaza Hotel) which is the tallest building in Pittsfield.  Antenna AGL is 44 meters (145 feet).
  • Changed the rebroadcasting station from WUPE-FM, North Adams to WUPE-AM Pittsfield
  • Changed the antenna to non-directional
  • Changed the ERP from 48 watts to 100 watts

We were able to make those antenna and power changes because we changed the parent station to the local AM station, WUPE, 1,110 KHz.  The previous power/pattern was submitted to keep the translator signal within the 60 dBu contour of the FM station in North Adams.

This, I feel, is the best use for an AM to FM translator.  WUPE-AM is a class D station with no nighttime service.  Adding a nighttime service greatly increases the station’s value to the community.  While the 100 Watt translator does not cover nearly as much as the 5,000-watt AM station, the transmitter location is right in the center of Pittsfield, so coverage of the population center is excellent.

The view from the top of the Crowne Plaza is quite spectacular.  I am pretty sure I will have a lot of transmitter maintenance to do right about the middle of October.

W277CJ 60 dBu contour
W277CJ 60 dBu contour

The installation is fairly straightforward:

W277CJ installation, roof of Crowne Plaza, Pittsfield, MA
W277CJ installation, roof of Crowne Plaza, Pittsfield, MA
W277CJ transmitter in outdoor enclosure
W277CJ transmitter in an outdoor enclosure

The outdoor enclosure is a DDB POD-16DXC which is rather nice, it comes with rack rails and a thermostatically controlled fan.

W277CJ Shively 6812B antenna
W277CJ Shively 6812B antenna

The antenna is a Shively 6812B with RADOMES. The transmitter is a BW Broadcast TX600v2.  I really like these transmitters, they are well-designed and rugged.  We have yet to have a single failure of one of these units in the field.

The station ERP is 100 watts, so a small bit of calculating is required to arrive at the proper station TPO.  I find it easier to make all these calculations in the decibels per milliwatt (dBm) unit domain, then convert them back to watts.  Thus, the ERP is 100 watts or 50 dBm.  The antenna has a gain of -3.4 dBm.  We used 25 feet of LMR-400, which at 103.3 MHz, has a loss of -0.26 dBm.  The total losses are -3.66 dBm, making the necessary TPO 53.66 dBm, 232.27 watts, or rounding down to 232 watts.

The old school marketing campaign

I found these old drawings in the filing cabinet and thought they were kind of cool. They look like they were drawn sometime in the 50s for the WPTR studio at 1860 Central Avenue in the Town of Colonie.

WPTR-billboard

It looks like there was a lot of Neon, including a speller, which I take to mean the sign would spell “W-P-T-R 1540” and then turn off again.

This was the sign for the entrance to the studio building

WPTR sign for front of old studio building at 1860 Central Avenue
WPTR sign for the front of old studio building at 1860 Central Avenue

I think this is a take-off on the old KHJ sign in Los Angeles.

Shielded Category Cable

There is some disagreement in the organization that I work with regarding the use of Shielded Cat 5e cable. Is it needed and if so, when and where?  Category cables commonly used in Ethernet computer networks and also used for analog audio and other data applications come in a variety of flavors.  Shielded (Shielded Twisted Pair or STP) and unshielded (Unshielded Twisted Pair or UTP) Cat 5, 5e, and 6 are the most common in radio broadcast facilities.

The main purpose for using UTP and STP for high-speed data transmission is common-mode rejection.  Cables that are installed in office buildings are subject to various electric and electronic noise sources.  Properly installed UTP works to reject these unwanted signals by using differential signaling, which is balanced.  Differential signaling can best be described as transmitting information using two complementary signals that are opposite from one another.

Noise rejection, differential signaling.  "DiffSignaling" by Linear77 - Own work. Licensed under CC BY 3.0 via Wikimedia
Noise rejection, differential signaling. “DiffSignaling” by Linear77 – Own work. Licensed under CC BY 3.0 via Wikimedia

The key performance measurement in category cable is Common Mode rejection.  Outside noise will introduce a common mode signal on the cable which will be canceled out by the differential amplifier on the receiving end of the circuit.  Proper terminations and good wiring techniques are very important for proper performance.

Using the correct patch panel termination, terminating block or RJ-45 (8P8C) connectors are required to maintain the advertised bandwidth of the cable.  There is also a difference in the connector and terminating block designs for solid versus stranded cables.  Using improper connectors for the type of cable installed can cause dropouts and loss of data.

When installing category cable, care must be taken not to kink the cable, not to exceed the recommended minimum bending radius, or exceed the maximum pulling force. Each of these will degrade the cable performance by changing the physical characteristics of the cable. Each pair of wires in category cable has a different twist. Altering these twist ratios by stretching the cable or bending it too sharply will increase the NEXT (Near End Cross Talk) and FEXT (far end cross talk) between pairs. In Gigabit networks, this will degrade throughput and create bottlenecks.

Generally speaking, the minimum bending radius is four times the cable diameter, or approximately one inch for Category 6 cable.  The maximum pulling tension is not more than 25 ft/lbs or 110 Newtons.

Category 6, Shielded Twisted Pair
Category 6, Shielded Twisted Pair

In high EMF environments, shielded cable (STP) can be beneficial in mitigating high electrical noise along with the proper installation techniques noted above.  Signaling levels on 100BaseT are +1, 0, and -1 volt (MLT-3 Encoding).  On Gigabit Ethernet, the levels are +1, +0.5, 0, −0.5, and −1 Volt (PAM-5 Encoding).  Induced voltages on cables from external sources can degrade network performance and create bottlenecks.  High EMF environments would include places like transmitter sites and anything on a tower or rooftop.  Properly terminated shielded cable is necessary for EMP protection from lightning strikes or other sources.  STP has special shielded metal connectors which each category cable class.  These connectors supply the path to the ground through the RJ-45 jack.

Ungrounded shields are useless.

RJ-45 or 8P8C shielded plug for Category 6 STP
RJ-45 or 8P8C shielded plug for Category 6 STP

There are also other cable characteristics to consider such as UV-resistant jacking for outdoor installations or gel-filled (AKA “flooded”) cable for wet locations.  Fortunately, there are plenty of sources for these types of cables and they are not terribly expensive.

To answer the question at the beginning of the post; STP can be beneficial at high EMI/EMF or RF sites to mitigate induced voltages on the cable from external sources provided it is properly terminated.  In office and studio locations that are not at or next to a transmitter site, UTP is more than adequate provided it is properly installed and terminated.

Be careful where you put your hands!

So, I was working at one of our FM clients in Albany when I decided I had a few moments of spare time, so I could neaten up the remote control rack.  I opened the rack door and was staring intently at the remote control interface panel when out of the corner of my eye, I saw something move.

Now, the top of the rack is a little bit dark and I was not sure what I was looking at.  At first, I thought somebody had stuffed a rag in the top of the rack.  But, I could not figure out why anyone would do such a thing.  Then I thought it was some cardboard.  I almost reached up and grabbed it, but something was amiss.  Then I saw the tough flick out and smell the air:

Transmitter room denizen
Transmitter room denizen

At this point, I think I may have said something like “Oh, shit!” and took several steps back. Those colors and patterns have two possibilities; Copperhead or Grey ratsnake. Since I could not really get a good look at its head, I could not tell which it was. I went and got a work light to see better with.

Grey rat snake
Grey rat snake

A copperhead is a pit viper, which has a triangular-shaped head and a small indentation or pit under each eye.  This snake has neither, so it is fairly harmless.   Actually, the rat snakes are beneficial because they eat the mice and other pests around the transmitter building.  There are several versions of these in the northeast, including a black rat snake which happens to look just like a piece of 7/8 coax laying across the pathway to the door, until it moves that is…

This species can get to be about 6 feet long (1.8 meters) and the larger ones can draw blood when they bite.  Even though he looked to be on the small side (approximately 30 inches or 76 cm), I decided that discretion is the better part of valor, closed the door on the rack, and did something else for a while.